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MESSENGER OF MATHEMATICS.

4-TIC & 3-B1C RESIDUACLTY-TABLES.

By Lt.-Col. Allan Cunningham, R.E., and Thorold Gossel.

1. Introduction. The object of tins Memoir is to intro-

duce Tables for determining the 4-tic and 3-bic Residuacity

of small prime Bases {q) and also that of the products of such

Bases {q t , q 2
, ...) towards prime Moduli (p), i.e. to determine

whether
q\(p-V=

t
or not = -1

; or =, or not = + l (mod/) (1),

q
UP-^)=

>
ornot = i

(m0(j p) (2).

The Memoir is divided into three Chapters:

—

Chap. I. Quart ic Residuacity, Art. 3— 156.

Chap. II. Cubic Resii.uacity. Art. 16—296.

Chap. III. Composite Bases and Examples. Art. 30—33.

Tables A, B, and Appendix.

la. Pepin s Formulas. The expressions of the Laws of

quartic and cubic reciprocity used in the present Memoir are

those developed by Pore Pepin in his Memoir quoted* below,

referred to hereafter (for brevity) by the author's name only.

2. Notation. All symbols are integers.

q, Q the Bases whose 4-tic or 3-bic Residuacity is sought modulo p.

q any small prime (usually odd), Q any base.

p a prime = 4-w + l, or 3-tsr+ l, the modulus of the opeiation.

7T, ir,, 7r 2 , &c, complex factors of p.

p a proper root of p
i — 1 = 0, or p

3 — 1 = .

X, p. are the solutions of the congruences which determine the sought
residuacity of q modulo p.

w means an odd number ; t means an even number.

* Memoire suv les lois de reciprocite relatives aux rcsidus tie puissances, par

le P. Th. Papin, S.J., Rome, 187S.

YOL. L. B



2 Lt-Col. Cunningham and Mr. Gosset,

Chap. I. Quartip Residuacity.

3. Qaartic liesiduacity. In order that Result (1)—the

4-tie residual relation—may be possible, it is clearly necessary

that—
p must be of form p=i-or+l (3),

which involves

—

fi = a.
2 + b2

, [a odd, b even (always reckoned +)] (4);

a is reckoned +, if a = 4a + l ; and-, if a = 4«-l] {ia),

which gives p= product of two complex factors, say 7r, w', of

type 7r, so that

p = irir', wherein 7r = a + bt, 7r' = a— hi (o)

where t is a proper root of p* — 1 = 0, the roots of which are

p, i°

2
, P

3
, P* = <, - 1, -*, +1, so that i-=-\, with i = + </~l (6),

and the 4-tie residual relation of the Base a modulo it is

qi(P- )= one f t}ie roots p (mod it)

= one of i, — 1, — i, +1 (mod -n) (7).

The symbol (7/77

)

4
is commonly used as an abbreviation, thus

(g/ir)
t means Residue of q^~^ modulo it (8).

It is immaterial which of t lie complex factors (77-, 77-') is

used; but it is essential that the same* factor [tr, or 77-') should

be used throughout: the effect of changing the factors (?r, 77-')

is to interchange the Residues ±1. The real Residues (±1)
result from the product-modulus 77-71-' =p, so that in this case

in the 4-tic residual relations (7J, (8) p may be written instead

of 77\

ic4. Qaartic Reciprocity. Pere Pepin has developed! tl.~

law of 4-tic reciprocity in the following forms, which are

convenient for numerical calculations along with the known
partition ^ = a

2 + b
3

, viz.

(a + bi) fc

(?/ir )4 —
;

—

Z
(mod g\ when<7 = 4/r + l (9«),

(a— bi)

(j»*t= j'T^u (
,nod St), when g = 4k-l (94),

* The Table A (at end of this Memoir) shows the value of (qJTr)i with
-jr - a ( lu

t J'e/iin. Art. 33, Theorem 1. Pore Pepin makes but little use of the imaginary
roots and residues (1), but introduces an auxiliary base {t) whereby the residues
are all real But this really complicates his work a good deal. The slight USB
lien made of the imaginary residues (t) and complex factors (a + bt) makes Lhe
work really much shorter and simpler.
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Expanding (a±bt)* by the binomial theorem, and

remembering? that t
2 = — 1, it will be found that

—

where
(a+b')*=A+B«, (a-b»)*=A-Bi (10),

4=a'-g)a»- 8 b'+ (*)ai
-, b«-

(J)
a*

8 b* + (*) a*-»b»-&c (11«),

B = (*)a*«b-(J)a*«W+(*)a*«W-(J)a"bM-_&c (116),

wherein the general terms are

In A; (
l
'}j air br [rc«e?i], with signs alternately ± (12.i);

In B; (*) a*-«"b
r

[»' orW], with signs alternately ± (126);

and the series evidently both terminate when a disappears:

the series may also be arranged with ascending powers of a,

and descending of b.

And, since (j/ir)
4
= p = one of i, — 1, — f, +1 (mod <?), it

follows that

A + B
A-B
A-B

- =rp= one of i, - 1, —i, +1 (mod q), when q=ik + 1... (13«),

p= one of j, —1, — i, 4-1 (mod q*), when q = lk — \. ...(136).

A + B

Hence arise the 4 congruences

p = t
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terms)—usually much greater than the modulus (q). All

such coefficients may be replaced by their Residues modulo q.

The functions A, B, and the Congruences (14a, b), with

coefficients so reduced, will be styled the Reduced A, B, and

Reduced Conqruences.

Every value of q has in general its own special set of

Reduced A, B, and Reduced Congruences: but this is not

always so with the ?«»reduced A, B, and w»reduced con-

gruences. For since A, B depend directly on k = \{q + l)

(and on q only through k), it follows that every pair of values

of q, such that

q = ±Jt-l, q' = ik + \ (both prime) q-q' = 2 [with same Is]

have the same (unreduced) A & B, and same (unreduced) Congruences. .(16).

[Examples; (g, g') = {3, 5), (11, 13), (59, 61), (71, 73), (107, 109), &c]

6. Number and Magnitude of the roots (/u,, X). The four

congruences (14a, b) are all of degree k in the ratios
/
u, = a/b,

\ = b/a, and have therefore exactly h roots each, all <q,
except that one root fi, X may = co .

Taking the four congruences together, each of /ti, X have
exactly 4k (=q=£l) different values, one of which is oo (in

both cases); and the rest (taken positively) are all <q. The
roots {(x, X) may also be arranged in pairs, one pair being

always 0, co ; and the rest are of type ±r, i.e. equal and of
opposite sign, the greatest (excluding co ) being always

±2(^ — 1); [except that ±2 are excluded when a = 5].

Hence, it arises that each of jj,, X have all the 4& (=a± 1)

values below :—

q=ik-\ gives /k, \ = 00, 0; ±1, ±2, ±3, ..., + \{q-\) (17a),

q= lk+\ gives fi, X.= oo, 0; +1, ±2, +3, ..., ± \(q-\) (176),

[With (wo exceptions in the latter case (as shown below)].

When q = 4k+l, a prime, then q = o? + fi\ and two cases

are excluded from the above, viz. /* not = + a//3, X not = ±/3/a
(mod q).

If these were admissible, they would give a/ 13 = /* = AjB,

ftja = X = BjA (mod q), which would involve q—p (since a, /3

are mutually prime, and A, B are also mutually prime), which
is obviously impossible.

The excluded cases for all q ;}> 100 are

—

q= 5, 13, 17, 29, 37, 41, 53, 61, 73, 89, 97;

±H, ±\= 2, 0, 4, 12, 6, 9, 23, 11, 27, 34, 22;



On A-tic and 3-bic Residuacibj Tables.

These excluded values are also given by either of the

formulae [equivalent to /u = ±a/;3, \ = ±0/ol (mod q)].

±/x, ±\ not =>;, where v is a root of >j
2 + l=0 (mod q) (t8a),

+ /x, + A not =gk
, g

3k (mod q), where g is a primitive root of q ..(186),

7. Products and Sums of pairs of roots (A, jx). The h

roots (/x, X,) defined by the ratios a/b, b/a, may be arranged,

for each one of the congruences, in pairs—[excluding the

pair co , 0, and also one unique root (± 1) when k is odd]—so

as to satisfy some of the following results

—

\fi= + ], XV=±1, W*'=±l (mod?) (\9a),

A+/i=0, X+ A'= 0, mT^'^0 (mod q) (196),

and also, In some cases, by taking one (A, or /x) out of each of

the associate congruences (A = 0, B=0),(A—B=Q, A+B=0),
modulo q as set forth in detail in the following scheme.

9
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9. Products of roots (/*, X). The Residues (modulo q) o^

the continued products of the whole set of k roots (u, or X) of

any one Congruence (14a, b) obey very simple* Rules. [The

roots /j,-or X = 0,c/o,are here excluded from the continued

products].

When (sMt=±h then n
(M ) & ri(X;= + l (mod q), always (22a).

When (q/p)t= + l, then n (/t) & U(X)=±1, ±4, + £(mod ?) [as below].(22)J.

[Use -g in (y/w)
4
and (07/) 4

when £= 4A — 1].
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In the scheme below, which shows the factorisation of the

Congruences (14a, b) in a general way, P, Q have the

following meanings

—

P= product of linear factors (a + /ib), (\a + b) ; \ju, \ all different].

(? = product of quadratic factors (a2 -^*b2
), (X2a3-b2

).; (>, \ all different].

rr , s a T3 factors of \\ factors r, , r * —t->Factors of A, B a~B q ot A B rs °-^ +

16^+1

8w+l

BEEab(a2-b2).0 A+B^/5
.

1fi
..

jB=ab.0
\Jk= {^-b"-).Q

k + B = P 8w + 5

16k 4- 3

8w + 3

B =b(?A-B = (a-b).i>
A= a(? A + B^a+b)./5

B=bQA-B = (a + b).P
A = &Q A + B= (a-l))./>

B= b(? A-Bsfa + b)./5

A=a<? A +B = (a-b)./'
B=b(?A-B= (a-b )

./'

A =a£A + B= (a + b)./>..(24)

12. Congruence-solutions. The four Congruences (14a, Z>)

are known (Art. 6) to contain together as their roots [n, A)

the wAoZe series of (4/c - 1) smaW numbers 0, ±1, ±2, ±3, ...,

up to \{q- 1); [omitting two when q = 4k-\- 1, see Art. 6].

The Congruences possessing the roots 0, ± 1 are known
from Art. 10. The factors a, b, a - b, a + b can be divided
out of them, thus depressing their degree.

The Congruences possessing the small roots ±2, ±3, &c,
are easily found by (numerical) trial. Directly any root

(±/i, ±\) is found, the corresponding factor (aqp/ib), (Aa=j=b)

can be divided* out of the congruence to which it belongs,

thereby depressing its degree.

The two Congruences A = 0, B = (mod q) are usually

much easier to solve than the other two, in consequence of

their roots occurring in pairs (±A,, ±/a), [Art. 7], giving at

once the simple 2
,c

factors (a
2 - /a' b

1

) ,
( A,

3
a

3 — b
z

)
, whereby

these two Congruences can be depressed two degrees (at one
step) for every pair of roots so found.

These Congruences— (when sufficiently depressed by can-
cellation of factors, as above)—yield congruences of 4th

degree in a, b; these will be found to be trinomial (involving

only a
4

, a'b3
, b

4

) and may often be solved semi-algebraically

by modifying their coefficients by aid of the modulus (<?), so

as to allow of their being resolved into simple 2
i0

factors; this

process is exhibited in the example below.

When the 2k roots (/*, X) of the above two congruences

* On performing these divisions, there will usually be a remainder (not zero)
;

but, if that remainder be— (as it should be)—a multiple of the modulus 7, it may
be cancelled out; this shows that the divisiou by the trial factor is exact.
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A = 0, B = liave been found, the remaining k pairs of

numbers (±r) out of the total of ik numbers of Art. 6, all

—

(except the pair co , 0)—<£(? + !), are (see Art. 7) the

required 2k roots of the two congruences A — B = 0, A+B = 0.

The magnitudes of these roots are hereby known: the proper

(±) sign to be attached to each can be decided by (numerical

trial, noting that— (by Art. 7)

± (i in A.—B= involves + /jl in A + B = 0,

± \ in A-B= involves + A in A + B= 0,

so that every root (±r) found for one congruence gives the

root (+r) of the other.

Hereby all the roots of the four Congruences (14a, b) have

been found. An example will make this clearer (see Art. 12a).

[The finding of all the roots as above— (by direct solution

of the Congruences)— is very laborious. An easier Method
will be explained in Art. 13].

12a. Ex. Take a = 31, whence /. = 8, a = 4/t-l.

(1) p = + l gives B = 8a7b-56a5b3 + 56a3b5 -8ab 7= (mod q)

= 8ab(a2 -b2
) Q (mod?); /&=«>, 0, ±1,

where (?=a4 -Ga8u
2 + b 4

= a4 -6a2b2 -216b4 (mod q)

= (a2 + 12b2)(a2-18b2
)
(mod?)

= (a-'-81b2j(a2 -49b 3
)
(mod q); /x=±9, ±7 .

(2) p=-l gives A = as -28aG Lr + 70a4b 4 - 28a2b6 + b8= (mod q)

= a8 + 3aG o2 + 82 4 b4 + 3a2b6+b8 EEo (mod q).

On actual trial, it is found that /* = ±2, ±3 satisfy this

congruence ; whence (by division),

A=(a2 -4b2)(a*-9b2
).<2 (mod?),

where (? = a4 + 16a2 b2 -Gb 4 (mod (?)

= a 4 + lGa-b2-lGlb 4 (mod (?)

= (a2-7b2)(aa + 23b2
)
(mod (?)

= (a
2 - 100b'-) (a

2 -235b2
)
(mod (?) \ ft=±l0, ± 15.

(3) p=+i gives A-!-B = (mod q); the Reduced Congruence (Art 5) is

a8 + 8a : b + 3a8b*-r 0a 5b 3 + 8a'b' -6asb« + 3a'-'b«-8ab 7 + b8= (mod q).

(4) p= -i givus A-B= (mod q); the Reduced Congruence is

a8 -8a 7b + 3acb2-6a5 b3 + 8a4b 4 + 6a3bi +3a2b6 +8ab 7 + b8= (mod q).

(3, 4). By Art. 12 these last two Congruences contain (as

their 1(1 roots) all the =h integer <±1G not already used in

the previous Congruences (A = 0, B = 0); in such a way
that ±/i., ±\ in cither Congruence involves +/*, + \ in the

other. The magnitudes of all the roots (fi, \) being hereby

known, the proper (±) signs are conveniently determined by

(numerical) trial.
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In this way it is found that

—

p= + t requires m = 4> 5. 6, 8, n, 12, 13, 14.

p=—i requires m = 4> 5, 6, 8, II, 12, 13, 14.

13. S'accession-formulas* Let tlie two complete sets of

4/o roots ix, and 4/c roots A, be arranged in two arrays, all of

four columns and k rows, with subscripts attached indicating

their positions in the arrays, as shown below:—where the

four columns contain the k roots belonging to the Residues

+ «, — 1, — t, + 1, respectively, as shown.

+ «l -1
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Hence ensue the following simple* general Results for all

values of q—[using {—q/ir)
4
when q = ik—l].

I, 0, +1, CO

1, «5, +i, o

q=ik-\
k, 2k, 3k, 4k

+ 1,

+1, 00
:

1,

.(28fl),

.(286).

k, 2k, 3k, 4k

Also /j,,k^.= -fj,2i- Jtr ; A 2t-r=-'V>'- (mod g) (29).

These last two Results show that it is unnecessary to

compute more than half the series of either
fj,

or A : as the

values of fi, and also those of X,, repeat— (hut with opposite

signs)—at equal distances on either side of the middle point

[where ^ 2,
= 0, X^seco)].

13a. Computation of a single series. The succession-

formula (27) can be worked so as to yield the roots (n, A.) of

any one of the four series {qJTr)
i
= + i, — 1, — t, + 1, if desired.

Starting with fi
t

, compute /u.
2 ,

/x
3 , fj,t

; these are the initial

roots of the four series for + i, — 1, — t, +1. Then, if ii c

denote anyone of these initial roots, the roots following in

that series are

—

A^h' Ma-48' M<r.l2. •••» M<rum (29).

Aso, if any root of any one series be fi
e ,

The next root to fx* is fiSli , (the succession-formula) (-9a).

1Q1>. Succession-formula— Proof. Starting with the initial

root /*,, write— (tor shortness)—



On i-tie and Z-hic Residuacity Tables. 11

whence M,+*= -^— (mod q), [the required formulas (27)].

Of course this includes formulae (25), (25a), as particular cases.

13c. Circular function* analogy. Writing

—

cot</>,-=,i*j, cot<p s= /j.s , tan</>,-= \,., tan</> s=A s (mod q) (30).

Then cot (</>,. + <7> s )
= /v,», tan (</>,.+ <f»,)=A.r+, (mod y) (30a).

and Results (28) show that 0^ has the following values

—

\q= ik-\

21c a

M + i

3i Ah. .(306),

• (30c),

or values differing from them by a multiple of ir.

14. Form of q with given X, fi. It has been shown else-

wheref that a certain linear form of q, say

2= R (mod A"), or q = m.K+ R ;
[m maybe— ]. .(31),

gives rise to the same complete set of values of X, and same
complete set of values of /j, for all multiples of the modulus K,
so that K is the period of recurrence of q, as q increases.

The following scheme^ shows the values of K, R which
determine the ^-formula for all values of X, fi ;)> ±4.

In this Table— whereof the modulus is K—the tabular
Residues (R) of form (4>- + 3) are all marked minus (i.e. r),
so as to be virtually of form (ir + 1) modulo 7T, so that all

the tabular values of q = m(K+R) are virtually of form
q = 4K+l. Values of q of form q' = ik' + 3 can be formed
by taking negative values of the multiplier m, with the
tabular Residues modulo K.

Ex. Take y. = 2; thenA'=40. The Table eivi

q =4k +1 =

q' = 4k' + 3--

40m
•40>»

i
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Writing R
t
, R

3
, R

3
, R, for the values of R in the columns

of t, —1, — t, + 1, the following relations are seen to obtain

—

excluding the cases of X = 0, fi = 0.

±X have the same R., set, and the same 7?
4
set (32a),

±fx have the same R, set, and the same 7?
4
set (326).

The Rx sets of ±\ are the same as the 7?3 sets of + \ (32c).

The Ri sets of ±/j. are the same as the R 3 sets of +/jl (32rf).

Each R x gives one R 2 , R3 , R A ; thus—(neglecting signs)—

R., = R
t
", R-^R", Rt=Ri*(moAK) (33).

Taking r as the least member of the 7?,, R^ R
3
groups in

turn, and taking 77,, 77^, »/
3

, ..., for the members of the R
i

group: then, noting that 97, = 1,

The complete Ru R2 , or R3 group is given bythe Least + Residues of

r>;,, r>h, ni3 , ..., (mod K) (3*).

Residues (R) of q [mod K) for given small values o/\, p.

[Use (-qlir)i, (-qjp)i where q = i/;-l].

Ijgf Note that R = 4r+\ (mod K), q= ik 1-1 always (in the Table).
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15. Table of i-tic Residue Criteria. The Table A (at

d of this Memoir) gives the lei

(mod q), which determine whether

(?/*")*= ±», fe/j»)4=±l,

for a/t
7

small prime Bases q<50, where

p = 4-w+l, a prime, = a2
-fb2

;
[a acta, 6 e»eu].

•7r=a + b(.

For each prime [q) there are tabulated & = l(:pl) values

of each of /x, A, in the columns headed c, —1, — t, + 1,

arranged in the order of the "arrays" shown in Art. 13;
these are the values of /a, X which give the required

residuacity-characters (t, — 1, — i, +1) shown at head of the

column. Reciprocal values of /j,, A [i.e. such that* \/x= + 1

(mod q)] are always placed side by side for ready recognition.

The Table gives the values of both /z, X in detail for each

of + q, — q separately, and also for ± q together, for the four

small prime Bases q= 3, 5, 7, 11 (on account of their relatively

"greater importance). For the larger prime Bases (q> 11),

the detail of /z, A. is given only for the simpler of the two
cases ±.q, viz.

For +q; when q=ih+l ; [Ev. 2=13, 17, 29, 37, 41].

For -q; when g = 44 -
1 ; [.£*. <? = 19, 23, 31, 43, 47].

Either case [±q) can be inferred from the other by the

simple Rule (15). Short directions in the Table itself also

make the change from (±q) to [+$) quite easy at sight.

15a. Base q=±2. The residuacity-characters [1, — 1,

— t, + 1) of the Base q = ±2 depend only on the value of b,

(not on that of the ratio b/a). The values of b giving these

characters for Base 2 are shown in a small Table at end of

the Table A.

16b. Use of Table A [q prime]. To determine whether

for a given prime modulus p = <±tj+1, the Residuacity of a

given small prime Base [q < 50) is

(Tqfr )«=+«, T, -*. +1, or
( + ?/H=~l, +1.

The 2
ic
partition ^ = a

3 + b" is supposedf known.

* This property often enables a misprint to be recognised.

t The values of a, b in this partition are given for nil primes of form

j> = \tb + \ up to />^>100000 in Cunningham's Tables of Quadratic Partitions,

London. 1904.
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Determine the integer value of one of /z, A from tlie

definition

—

fj.
= ;\/b, A= b/a (mod q)— [with proper sign of a],

find seek that value of /j, or A, in the body of the Table of

modulus /*. The required Residuacity-character (+1,1, — t,+l)

due to that value of ai or A will be found at the head of the

column of /j, or A. For Examples, see Art. 32a.

[As to the sign of a, see (4a). When the character +

1

alone is being sought, the sign is immaterial (as ±/x, ± A give

the same Result) ; but the proper sign must be used when the

characters ±i are under trial]. -

Chap. II. Cubic Residuacity.

16. Cubic Residuacity. In order that Result (2)— the

3-bic residual relation—may be possible, it is clearly necessary

that—
p must be of form p = 6-ar+\ (36),

which involves

—

p = A 2+ 3B2 [A, B are one odd, one even, and mutually prime]

= i(L2 +27^/ 2
) \L, A/ both odd, or both even; otherwise mutually prime]

...(37).

[A, B, L, Afare, when even, reckoned +,

and, when of form (4a + 1), are reckoned +,

but, when of form (4a -1), are reckoned — ] (37a).

This also involves that

—

p — product of two complex factors, say tti, tt2 of type v^ so that

«,=</> (p) = ff + a,p+ «2p
2
, or =$(L+ 3M) + 3Mf) (38a),

7r.2 =<l>{p,)=a + a.,P + a lP*, or =%(L+ 3M) + ZAlp* (386),

wherein p is a proper root of p
3 — 1=0 (the other proper

root being p
3

)
; the roots of which (say p„ p 2 , p 3)

are p x

= p^

Pi = P
2

> Pa = l •

The cubic residual relation of the Base q modulo it is

yW'^sone of the roots p, (S, 1 (mod v) [it is one of t,, ir„]. ...(39).

The symbol (y/7r)
3

is commonly used as an abbreviation] thus

(q/ir)
3 means Residue of q"p

' modulo ir (39a).

It is immaterial which of the complex factors (tt,, 7tJ is

used; but it is essential that the same* /actor [ir
}

or 7r,)

* In the Table B (at end of this Memoir) the value of ('/» 3 is given

with Tr = 7r..



On i-tic and B-bic Residuacity Tables. 15

should be used throughout : the effeet of changing the factors

(tt,, -jr.,) is to interchange the Residues />, p\ The real

Residue (1) results from the product-modulus 7r
1
7r

s =^, so

that— in this ease—in the 3-bie residual relations (39) p may-

be substituted for it.

IQa. Properties of the roots (p) of p
3 -l = 0. The three

roots pr pr p3
of p

:i - 1=0 are such that

1+^ +^ = 0, p 1
= p = i{-l + V(-3)} ) p2=^=M-l-V(-3)}, p,= l..(40a),

(l- /0)/(l + p)=-V(-3), (l-A'(l+P?
) = + V(-3) (-106).

Also, writing 6 2 ~27 = 0, or0=+V(27) (41«),

e.l±f=+8> e.iiP!=3 (4i6),

i-p i-p2

17. CwJtc Reciprocity. Pere Pepin has expressed* the

law of 3-bie reciprocity in the following forms, which are

convenient for numerical calculations along with the known
partition p = \ (U + 27 A/

2

), viz.

(?/*>3= if*!!;?'!! , (mod ?)• "'hen ?=3A+1 (42a),

W*)*=
{T^S> (mod -?), when !?

=37,-1 (426).

Expanding (L±M0c) k by the binomial theorem, and

remembering that C =- 1-, it will be found that

(Z+J/tf^L + Mfh, (ZL-M0O l =L -Me ' (
43 )«

where

L = £*-(J')Li-M/ 9e
2
+(J)z;t -*JI/'fl« -(J)tf

«M<W<+ (*)£*"«Jf»fl»-&c..(4Ba),

M0=(f)i*-
Ji/0-g)i^»JIPe3+^)L*-*Ji»es-/^Z*-^i^+&c (136).

wherein the general terms are

In L; (*f) L* M/''6 r
, [> even], with signs alternately ± (43<r).

In M ; (*] U^Mr9rt [r odd], with signs alternately + (43d),

and the series evidently both terminate when L disappears;

the series may also be arranged with ascending powers ot

L, and descending of M6.

* Op. cit. Art. 1G, Theorems IV., V., Art. '25, Theorems VI., VII. Pepin

makes little use of the imaginary roots and residues p, p
2

,
but introduces an

auxiliary Base {I), whereby the Residues are all real But this really complicates

the work a good deal. The slight use here made of the imaginary residues {p, p-)

and complex factors (.•*„ tt.,) makes the work really much shoiter and simpler.
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And, since (gjir) 3=one of p, p
2

, 1,

therefore ^nr =one °* P> P*> 1
(
mo& ?)» when q = Zk + l (44a),

= —-=one of p, p
2

, 1 (mod q), when £ = 3/j — 1 (146).

Hence arise the following three congruences, noting that

1-fJ 1-p2

The Residue
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and to the similar sets of four Congruences (14a, b) and three

Congruences (45a, b) the roots (/*, A.) of which determine the

character (t, T, — t, +1) of 4-tic and (p, p\ 1) of 3-bic

residuacity.

20. Number and magnitude of the. roots (ft, \). The
three congruences (45a, b) are all of degree k in the ratios

fi = L/M, \ = MjL, and have therefore exactly k roots each,

all <a, except that one root (/j,, A) may = co .

Taking the three congruences together, each of n, A, have

exactly 3k(=q+l) different values, one of which is co (in

both cases); and the rest (taken positively) are all <q. The
roots (/x, A) may also be arranged in pairs, one pair being

always 0, co
; and the rest are of type ±r, i.e. equal and of

opposite sign, the greatest (excluding co ) being always

Hence it arises that each of /x, X. have all the 3k(=q-\- 1)

values below :

—

q = Zk— 1 gives /j.,
\- «, 0; ±1, +2, ±3, i(?-l)...(4S«),

ives^a, A = oo, 0; ±1, ±2, ±3, .... ± £(£-1) ...(186),

[with two exceptions in the latter case].

When q = 3k + 1, a prime, then q = -} (F + 27m 2

), and two

cases are excluded from the above, viz. /m not =±ljvi,
X. not =±m/l (mod q). If these values were admissible they

would give Ijm = /x = Lj J\f, ?»/i7 = A = M\ L (mod <?), which

would involve q = p, which is obviously inadmissible.

The excluded cases for all q ;j> 100 are

q = h i3> '9, 3h31, 43.61. 67. 73, 79, 97; (34-i-l).

+ /t=I, 5, 7, 2,11, 4,20,24,22,17,19; Z/w.

+ A=I, 5, 8, 15, IO, II, 3, 14, IO, 14, 46; m/l.

21. Products, and Sums, of pairs of roots. The k roots

(/li, A), defined by the ratios p,= L\M, X=MjL, may be

arranged in pairs, k being always even (excluding the

pair co , 0) to satisfy the results shown in following scheme.

1
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22. Simple Cases. From tlie want of symmetry in the

Congruences (45a, b) very few general solutions can be

recognised at sight. Only two in fact are easy, viz.

For every q\ LHf=0 (mod q) gives (q/p)3 =\ (50).

[Contrast the numerous simple cases under 4-tic residuacity, Art. 10].

23. Factors of the Congruences. The Congruences (45a, Z>),

being of degree k, must break np into a product of k linear

factors of form (Lq=/iJ/), {XL + M) modulo q, where X, p,

have the values (<q) shown in Art. 20.

In the Result (51) below, which shows the factorisation of

the Congruences in a general way, P, Q have the following

meanings

—

P=product of linear factors (L+/iAf), (\L + M); [ft, \ all different].

= product of quadratic factors (L'+^M 2
), (\*IJ+M2

); |>, \ all different].

Then—
For every g; U= LM.Q, L + 3M = P (51).

[Contrast the numerous forms under 4-tic residuacity, Art. 9].

24. Sums of roofs (/*, X). The Residues modulo q of

the whole set of k roots /x, and to a lesser extent of the whole

set of k roots X, of any one Congruence (45a, b) obey some

very simple Rules:—[The root fi or \= ao is excluded from

the summation].

(q;p) 3
= l gives E(ai)e=0, Z(\)= (mod q), always (52a),

(^/7r)3
=r

j0 gives I.fi=-1 (mod q), (qj ir
)3
= p* gives S (/*)=+ 1...(526).

When [qj'n)
3
=p °>' p

2

,
the presence of the factor 3 in the

two Congruences L + 3M = causes the Residues of 2(\) to

be irregular.

25. Products of roots (/jl,X). The Residues modulo q of

the whole set of k roots follow the simple Rules shown in the

scheme below :

—

6A—

l

6* + 1

(q/n)3 = P or p
2

nw, n(-M

1/3

1

(qlph=\
ni/*). n(M

-1/9, -9
-1/27, -27

.(58«),

.(536).

26. Congruence-solutions. The three Congruences (45a, h)

are known (Art. 20) to contain together as their roots
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(±^5 ±^) tl' e whole series of (3k — 1) small numbers

0, ±1, ±2, ±3, ..., up to \{q — 1):

—

{omitting two when

q = 3k + 1, see Art. 20].

The procedure for solution is much the same as that given

for the 4-tie case (Art. 12), so need not be detailed here.

The Congruence M=0 (mod q) is usually much easier to

solve than the other two, in consequence ot" two of its roots

being 0, c© (giving at once the factors L, M), and of the

other roots occurring always in pairs (±/i, ±A.), which give

2
ic
factors (as in Art. 12).

An example will make the procedure clear (see Art. 2Ga).

26a. Ex. Take q = 19 ; whence k = 6, q = 3k + 1.

(1). Pi =l gives M = 6ZA1/-20Z3.U 3.27 + GLJ/ 5.27 C

= 6L;l/(L 4 + 5ZAU 2 +7-U 4

)
(mod q)

= &LM.Q=0 (mod?);

Q^V + SLWP-oOM* (mod q)

= (L2 -5<17 2,(L 2 +10iLr-) (mod q)

= (L2 -81ili a)(Z.2_9J/^ (mod?);

M =0 (mod q) gives fi = Q, cc , +9, ±3.

(2) & (3). p,=p, and p,=p- give L + 3M = (mod q) ;

L + 3M = (Z«-15L'J/V27 + loL'-'J/<.27 2 -J/ G .27 3
)

+ 3 (GZ.U/-2 L\U\ 27 + GLM\ 2V)

= (L s -6L*JJ i +\(j L-M* +M«)+ (

-

UM- 5LU/3- 7O/3
)
= (mod q)

.

By Art. 20 these two Congruences contain as their roots

all the 12 (±) integers < 10, not already used for the previous

Congruence (M = 0) [viz 0, ±3, ±9], excluding also /* = ±7,
\ = ±S (see Art. 20); and in such a way that ±yu,, ± A, in

either Congruence involves +/*, +-X in the other (Art. 21).

The magnitudes of all the roots (/z, X) being thus known, the

proper (+) sign can be conveniently determined by (numerical)

trial. In this way it is found that

—

Roots for p x
=p Roots for p = 2p

2

M =
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three columns contain tlie k roots belonging to the Residues

p, p, 1, respectively, as shown.

p
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These last two Results show that it is unnecessary to

compute more than half the series of either /j, or X
; as the

values of p., and also those of A,, repeat— (but with opposite

signs)—at equal distances on either side of the middle point

(where pzk = 0, or X±k = co (mod q).

27a. Computation of a single series. The succession-

formula (55) can be worked so as to yield the roots (p,, A) of

any one of the three series (^/vr)
3
= jO, p\ 1, if desired.

Starting with /*,, compute p.^ pa \ these are the initial

roots of the three series for p, p
2

, 1. Then, if pa denote any
one of these initial roots, the roots following in that series

are

—

Mfff4 > Ma, 6' M,r + 9> "•> M^sm ( 59rt )-

Also, if any root of any one series be fi
)

The next root to m« is m*+3> (the succession- formula) (596).

27b. 4.-tic <£ 3-bic series of £ = 13. The series of 12

consecutive roots yu-, and of A also, for # = 13, will be seen to

be identical in the 4-tic and 3-bic Tables—(see Tab. A, B).

This identity seems at first sight extraordinary, as the 4-tic

and 3-bic reciprocity-conditions (9a. b\ 42a, b) have different

indices [k= l(q- 1), I [q - 1)].

The reason is that the two succession-formulae (27, 56)

become identical modulo q = 13. This identity cannot occur

for any other Base (q).

27 c. Succession-formula, Proof. Starting with the initial

root /*j, write (for shortness)

—

ak-*±* *-*±?, [when*= 8* + l].
yU, — 01 fir— VI

Then—by (42a)

A'i*=/o, Ar
,

2<'=p*, AY*=1, Ki ik =p, and so on (mod q),

therefore
^i-0t.

Mr+i+<Hence ^r+* '

" =Kr
yU,- ts

— 01
:

V,-oJ
_

Vmi-^'Z Ui-tf'/

s*P .*.s^.^ (niod*)
Mr"? 1 M»- tft

=
M ,.M, + av- (M, + M.)ei

(mod ^'

whence
fj,r+,= — (mod y), [the required formula (56)].

Of course this includes formulas (54), (54a) as special cases.

C2
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27d. Circular function analogy. The results (52), con-

necting yu.
}

.+j , X.
tg

with pr ,
/n

s , \, \, closely resemble the

formulae connecting cot (^ + ^J, tanf^+^J with cot (j> r ,

cot^)
s , tan <p r , tan0

8
. Writing

cot (f}r = fi,-ld, cot(ps =/x,/d; tan <£ r =0.\,., tan cf>s = d\3 (mod 5).

Then cot (</>,• + </>«) = M'W^i tan (</>,.+ </>,) =0A r+ , (mod j).

[Compare this with Art. 13c]

28. Form of q with given \, p. It has been found that

a certain linear form of q, say

g= ± R(mod A'), or q=m.K± R (60),

gives rise* to the same A. and same /x, viz one value for each

of the conditions {q/ir)
3
= p, p

2

, 1. [Compare this with

Art. 14].

The scheme below shows the values of IT and ±R which

determine the ^-formula for all values of .p. up to ±5.
It will be seen that, writing Rr i?

2
, B

8
for the values

of JR—[neglecting the sign)'— in the p, p
3

,
1 columns,

±/j. have the same R
3
set (61a).

The 7?3-sets for p= 2, 4, 8, &c, are the Residues of 2X (mod h).

The residues ot the successive powers of certain /?, modulo A'

give the complete sets of Ru R2, Hs (61&).

Taking r, the initial member of the group /?[ or Z?2 , and v
t , v>, ') 3 , &c,

the complete set of R3 , then the complete sets of Ru R2 are the

Residues of r^u r\'>z 1'1'h^ &c (61c).

fj.
K
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For each prime (q) there are tabulated k — \{qT l) values

of each of fi, X in the columns headed p, p
2

, 1 arranged in

the order of the "arrays" shown in Art. 27; these arG the

values of /x, A. which give the required residuacity-character

(O, p\ 1 shown at head of the column. Reciprocal values of

yu, A. [i.e. such that* \/i = + 1 (mod q)~\ are always placed

side by side for ready recognition.

29a. Base 2. The residuacity-characters (p,p
2
, 1) of the

Base 2 are most conveniently expressed in terms of the " 2
10

parts'* A, B— [see (37a)]— when that Base alone is concerned:

but, when occurring in combination with other (odd) Bases,

those characters are required in terms of ihe ratios M/L,
L/M— (as for the other Bases). The results /x, X are

accordingly shown in a small special Table, with the modulus
4, at the foot of Table B.

296. Use of Table B [q prime]. To determine whether
for a given prime modulus p = 3ct+1, the Residuacity of a

given small prime Base (q <50) is

(?/7r )s= P> p
2

, i ;
or (glp),=l.

The 2
ic

partition p = 1 (Z7 + 27AP) is supposedf known.

Determine the integer value of one of /x, A, from the

definition

fi=L/M, \=M L (mod q)— [with proper signs of L, M],

and seek that value of /j, or A in the body of the Table of

the modulus^. The required Residuacity character (p, p'\ 1)

due to that value of ij. or X will be found at the head of the

column of /x or X.

[As to the sign of L, il/, see (37a). When the character

[<llp)3
= l alone is being sought, the sign is immaterial (as ±X

or ±jii give the same Result) ; but the proper (±) signs must
be used when (<7/t)

3
= /o, p

1

are under trial].

Chap. III. Composite Bases.

30. Extension to Composite Bases [Q). When Q is

composite, say

Q = q^q:q3 , ...,; [<7i, q>, &c, any primes; q, may =q.,, &c] (62),

the known formulae

(QMt= (2iM*. (?a/*)4- (ft/*)*. &c (63a),

(Q'TT^iqjTrh-iqjTrhAfrMs, &c (636),

* This property often enables a misprint to be recognised.

t The values of L, M in this partition are given for (ill primes of form ;) = 3-nr + 1

,

up to jj^> 100000 hi Cunningham's Tables of Quadratic Partitions, London, 1901.
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enable the use of the Tables A, B to be extended to composite

Bases Q, where Q is a continued product of primes q and

prime-powers o
K
, whenever the bases q are all < 50— (the

limit of the present Tables).

And note that p may be substituted for ir in any of the

above symbols when that symbol (qjir)
i
or (2/77), = ±1.

Jn all cases of composite Bases {Q), the proper (±) signs

of the component Bases (q)—[in the symbols (<?/7r)
4
]—and

also those of all (odd) 2
i0
parts, viz. a, L, M, must be affixed—

[see Art. 3, 4, 16, 17].

31. Extension to any Base Q. The finding of the 4-tic

or 3-bic liesiduaeity-chaiacter of any Base (Q) whatever may
often be brought within the range of the present Tables by

first forming the sum or difference of that Base (Q) and any

number of multiples (mp) of the prime modulus (p), and then

resolving the result {mp * Q) into its prime factors, say

mp ^:Q=p
l

" .p./.p3
7

, &c (56).

If this can be done in such a way that all the prime

Bases (q) are <50, the present Tables will suffice to give the

required 4-tic or 3-bic residuacity of Q on applying the

proper formula.

32. Examples (of use of Tables). In the following

Examples the moduli (p) have been taken <1000 in order

that the Results [(?/*)<, {qM# {Qjp\, {Qlp)H]
might be tested

from Jacobi's Canon Arithmeticus. These Examples have

also been so chosen as to emphasize the necessity of affixing

the proper (±) signs to the Bases q (when q = 4k — 1, see

Art. 3 footnote), and also to the odd " 2
ic parts" a [when

a = 4a-l, see (4a)], and L, M [when L = 4a-1, M =4/3-1,

see (31a)].

33. Computation of Tables. The principal Tables A, B—
(at end of this Memoir)—were computed by the joint authors

independently. The short Tables in Art. 14, 28 are due to

Mr. Gosset.

32a. Examples of 4-tic residuacity.

Take p = 997 = 4.3.83 f 1 = 3I* -\ 6*
;

[here a is -].

Find (799 lp)v (506/rt 4 ,
(911 lp) t

.

Ex. 1°. Q= 799 = MA1=qiqv

<7l =17give3 M=g = ^-=^=-8(mod 17); (17/»)4- + «.

,7,= 47 gives /x= ^ =^r- = ^-=-13 (mod 47) ; (*7/*)4=+''

(799//>) 1
=(n/T\.(47./ 7r)

1= (+').(-<)=^ 1 .
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Ex. 2°. 0=506= 2.11.23 =ftftft.

ft= 2, with b = 6 = S.l-2, gives (2/-ir)
4
= -t.

ft=ll gives /*=^- =IL_=_7= + 4 (mod 11); (n/»)
4
=+i.

ft = 23 gives l^=^~ =^ = -9 (mod 23); (23/p)4=-l.

(«06/p)4= (2/r)4.(ll/»)4.(28/j»)4= (-i).(-*).(+ l)= _l.

.Cr. 3°. = 911 (a prime >50); here 0=-(/>-911)= -86=2.43=ftft
ft = 2; gives (2/ir)

4=-t as above. (mod/?).

ft =43 gives M^ 1^ =^- =+2 (mod 43); (43/->r)
4
=+ t .

(911/p)4 =(2/ff
)4 .(l3/1r)4= (_ t).(+t) = + l.

32*. Examples of 3-bte residuacity.

Take p = 991 = 2.9.5.11 + 1 = 1 (Gl
3 + 27.3").; [here M is -].

Find (461/?),, (962/p)„ (113/?),.

£*. 1". 0=451 = 11.41 =ftft.

n 61 +72
ft= ll giv«s At=_=--^-=_24=-2 (mod 11); (ll/ir),= + />.

,. . 61 fl02
ft=41 gives ,i=— =__ = _ 34 = + 7 (mod 41)

. (4^)3=^2.

(1.51//;)3 = (ll/7r)3.(41/7r)
3
= p.p--

>= l.

j£r. 2°. Q = 962 = 2.1 3.37 = <?,ftft.

„ . 61 61-4
ft = 2 gives »= ^r

3
= — -j- = -19=+l (mod 4);. (2/*), = p.

.... 61 +48
ft = 13 gives M=^ =^3-=-16= -3 (mod 13); (13/»),= p

*.

ft=37 gives /m=~ ^i-4^ -8 (mod 37); (3~/P )a
= l.

(962//>
)3 =(2/7r) 3.(U/Tr)3.(37/p)3 r=p.p*.l = l.

Ex. 2°, bit. 0=962= -(p- 0)== -29 (mod p)\ ft=29.

™ . 61 4 90
?=29 gives ^=-=1^= -30= -1; (29//>),= -l; (962/p)s=l.

.EV. 3°. = 113, (a prime >50); p + = llO4 = 2 4.3.23 = ftftft.

(2Vir)*=(23/ir)8. (2/tt)s=1.p as above.

61
ft=3 gives /*=_=oo (mod 3); (3/ir) s= l;

ft =23 gives M=— =^— =-28=-5 (mod 23); (23/Tr) 3
= p

«.

(113/^)s=(1104/p)8=(2V7r)a .(3/7r)s .(23/i»),= |0.pM=l.
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Criteria of i-tic Residuacity of q {mod p). Tab. A.

(qj 7r) A
= ±i

)
and (qjp) i

= ±l when /x = a/b, \=b/a (mod 2).

("Crosswise" means interchanging the ±i columns, and al*o the ±1 columns].

Values of (2/ir) 4 « (2/p) 4 .

+ i -1 -« +1
,u A. /zX /* A. ,u,X

I 4w I 1 I 00

3
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Tab. A (continued).

Criteria of i-tic Residuacity of q (mod p).

(qltr)i
=±i and (q',p) i

= ±l when fi =a/b, \= b/a (mod q).

["Crosswise" means interchanging the ±i columns, and also the +1 columns.]

q
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Tab. B.

Criteria of 3-bic Residuacity of q {mod p).

(?/7r ) 3
= P, p

2

', (ql2}\= !> when f^= LjM, \=MjL (mod q).
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Tab. B {continued).

Criteria of 3-bic Residuacity of q (mod p).

'tt)
3
= p, p

2

; (2/^)3= 1, ivhen fM = L/M, \=M/L (mod q).

q k
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Appendix.

Pepins Results. In respect to 4-tic residuacity Pepin

describes a Base q as of class 1, 2, 3, modulo p when—in

the notation of the present Memoir

—

(g Jtt)
4
=+ l, — 1, - t, +1

respectively, and gives the "class-numbers" of the* Bases—

q=S, 13. !7, 29; 3, 7, '9. 23

In respect to 3-bic residuacity he describes q as of class

1, 2, 0, when—in the notation of the present Memoir

—

{qjir)
3
— p, p'\ 1, where p

3 — 1 = 0; and gives the "class-

numbers" of thef Bases

—

S= 7> 13. 19. 3i; 5» ". l 7> 23, 29;

Errata in Pepin s Work. In the course of preparing the

present Tables, the following Errata lias been found in his

Text and llesults

:

Errata in the Text.

Page
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ON PLANE CURVES OF DEGREE n WITH
TANGENTS OF h-POINT CONTACT.

Second Paper.

By Harold Hilton.

§ 1. In a former paper* properties of such curves were
discussed when the curves were unicursal. Here we consider

some other cases.

Suppose an ?*-ic (curve of degree n) has three real ??-point

tangents (tangents having jj-point contact) forming a triangle

ABC, t lie points of contact being D, E, F.

When n is odd, D, E, F must be collinear. When n is

even, either D, E, F are collinear, or else AD, BE, CF are

concurrent and a conic touches BO, GA, AB at D, E, F.

This is proved at once by taking ABG as triangle of reference.

If the real ?*-point tangents are concurrent, their points of

contact must be collinear whether n is even or odd (see §8).

§ 2. Consider first of all the case in which three real

n-point tangents of an n-lc have collinear points of contact,

n being odd or even.

Jt readily follows by repetition of the preceding argument
that, if three real »-point tangents have collinear points of

contact, then the points of contact of all the real w-point

tangents are collinear.

Now we have the theorem :

—

I. "If

IjX + m
xy + 1=0, l

3
x + m

3y +1 = 0, . . ., l
kx + m

hy +1 =
are lines, each meeting an ?*-ic in r points at infinity, the

equation of the n-ic may be put in the form

(\x + my + l)...(l
hX + m

ky + 1) u
n _ h
+ u

n_r
= 0,

where u
n_h
=0 is some (n — h)-'\c and uur=Q some (n — r)-ic".

Consider now the case of an n-'ic having n real H-poiut

tangents with their points of contact collinear. Suppose the

chord of contact projected to infinity, so that the tangents

become the asymptotes^

1
l

x + m
]

y+l = 0, I
2
x f ?»y/ + l=0, ..., // H»„?/+ U0...(i).

* Messenger of Mathematics, vol. xlix., p. 129. Tliis paper will be referred to

as " Paper 1".

f If any one of these asymptotes, say the first, passes thiougU the origin,

replace l^ + m^j 1-1 by lx
t+y or x + m,y, etc.
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Then the n-ic becomes

(l
1
x + m

ly + l)(l
a
x + m

a
y+V)...(lnx + mtl

it + l)-k...(\i),

where h is some constant; as is evident on putting r = h = n

in Theorem I.

If we suppose the tangents (i) and their infinite chord of

contact to be given, we have given n
2
points at infinity on the

n-ic; whereas an n-ic is completely determined by \n (n -f 3)

points in general. The explanation is contained in the Theorem
II. "Suppose n — r+l tangents of an n-ic have (at

least) (r+l)-point contact at points which lie on a line

meeting the curve again in P. Then if the tangent at P
meets the curve at least r times at P, it must have at least

(r+l)-point contact at P".
For, putting h = n—r + 2 in Theorem I., we have

Jx + mA/, .... I ,x + m ^,y all factors of the terms of decree

n — r in u
n_ r

. lherctore these terms, vanish, and all the

n — r + 2 tangents have (r+l)-point contact.

Now it follows from Theorem II. that, if an ?i-ic has

n given tangents of n, n, n — 1, n — 2, ..., 2-point contact with

the curve at infinity, which is equivalent to

n + n +. (n - 1) -f (« - 2) +...+ 2 = £»(n + 3) - 1

conditions, then the n given tangents have all n-point contact.

The equation of an n-ic with n such tangents of n-point

contact at infinity has therefore one arbitrary constant in its

equation, namely, h in equation (ii).

We see that to be given n-point tangents at n given

collinear points, and also to be given one more point, determines

an n-\c uniquely.

In general, to be given {n — r + l)-point tangents at

n given collinear points, and also to be given an ?-p!e point,

determines an n-\c.

]{ the tangents are the lines (i) touching at infinity, and

the )--ple point is the origin, the n-ic is

where pa
denotes the sum of the products of J

x

x + m
Ay,

l
a
x + vi,jj, ... s at a time*.

If n(n — l)-point tangents at n fixed collinear points are

given, and the »-ic has a cusp, this cusp lies on a fixed

2(n — 2)-ic. The case « = 3 is well known.

* An n-ic with n — r + \ n-point tiingents at infinity and an r-ple point at the

origin is

(/,* + m
ty + 1) ...(/„ ,-, ,.r + ?»„ .r+1y + 1) «,.., =1,

the coefficients of «r_, bung chosen to make the origin an r-poiut j aid so in §i.
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§ 3. The product of the distances of any point on the n-ic

of § 2 (il) from its asymptotes is constant.

The only real inflexions of the n-\c are the n(n — 2)

inflexions which coincide with the points of contact of the

lines of § 2 (i).

For, if there were another real inflexion, we might suppose

it to be the origin and ?/ = to be inflexional tangent. This

•would involve &= 1, /,+ /
2
-f...= 0, IJ^-j- lJ3

+...= 0, giving

l* + ^+...= ; which is impossible.

If the tangent at any point P of the ?i-ic meets the

asymptotes in P,, P,, ..., Pn, then

l/PP,+ l/PP
2
+...+ l/PP=0.

The same holds for any line through a double point P of

the ?i-ic, if such exists.

For, if the tangent (or line) is taken as y = and P as

origin, k = 1 and ?, + £,+...= 0.

Similarly we see that, if the n-'ic has a double point, it

must be an acnode (with unreal tangents).

Of the family of curves obtained by varying k in § 2 (ii)

§ (n — 1 ) (n — 2 ) have an acnode.

The two (n — l)-ics

S.IJ (l
t
x + m

ty + 1 ) = 0, ZmJ(I
t
x + m

ty + 1) =
meet at these \(n— V)(n — 2) acnodes and at the \n(n — 1)

intersections of the asymptotes.

The n(n— 1) points of contact of tangents to § 2 (ii)

drawn in any given direction trace out a fixed (« — l)-ic

through these acnodes and intersections of the asymptotes as

k varies. The centroid of these points of contact coincides

with the centroid of the intersections of the asymptotes, being

independent of k and of the given direction.

If we take k = ±€, where e is a very small positive

constant, the n-ic of § 2 (ii) is one of two curves each of which
approximates very closely to the n asymptotes. The two
curves have each a circuit composed of n infinitely extending
branches when n is odd, and \n circuits composed of two such

branches apiece when n is even. The two curves have
between them £ (w — l){n— 2) closed ovals. Lines can be
found meeting each curve in n real points.

If we now suppose e to increase, the two curves change
their shape. The %(n — l)(,v — 2) ovals shrink up one after

another into an acnode and disappear, till finally the

n infinitely extending branches alone are left. The curve can
be projected into a closed curve or into one with a single

asymptote according as n is even or odd.

VOL. L D
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If p of the asymptotes are concurrent at 0, some of the

above remarks require modification. For instance, the

number of acnodal curves of the family is reduced by

^ (p — 1) (p — 2). Taking the polar equation of the family

with as pole, and differentiating the equation partially with

respect to the radius vector, we get an {n — p)-\v. Hence we
have the result :

—

"An w-ic has n w-point tangents, their points of contact

lying on a given line. Of these n tangents n — p are given,

while the rest pass through a given point 0. Then the points

of contact of tangents from lie on a fixed (n— p)-ic ".

§ 4. Suppose now that an 7?-ic has not only n real n-ppint

tangents, whose points of contact are collinear, but has also

a pair of conjugate unreal w-point tangents. After a suitable

projection we may suppose the chord- of contact of the real

?*-point tangents to be at infinity, the two unreal ??-point

tangents to be y = ±i(x- 2c), and their chord of contact

to be x = c. First take n odd. When we put i{x — 2c) for

y in §2 (ii), the left-hand side must become k—p(x — c)
n

.

This expression can be factorized, and, identifying the factors

with l
l

x + m
)
i(x — 2c) + l, etc., we see that the equation of

the curve must become the result of dividing by b — c the

equation

n {(c—bcos27rsln)x + (bm\2Trsln)y + b
2—

c

2

\
= b

n
(b

n— c")...(i),

where s= 1, 2, ..., n. This may be put in the form

2
n
b
n
(b"- c") + b

n
(x + iy )

n+ b
n

(
x - iy)

n

-{cx + b
2-c2 +[(b*-c2)(b*-c2+2cx-x 2)-b 2

yj}
n

-\cx + b
2-c2 -[(b2 -c 2

)(b
2-c2+2cx-x2)-b2

yj}"= 0...(n).

The lines through the points

(c + & cos 2776'/ /? > b s\n 2tts I n) (iii),

perpendicular to the lines joining them to (2c, 0), are real

w-point tangents of the curve. One of them (given by s=-n)

is x = b -f c. The points (iii) are the vertices of a regular

polygon inscribed in the circle

(x-cY + y
2 =b%

and the real H-point tangents of the n-\c all touch a conic with

foci (2c, 0), (0, 0) of which this circle is auxiliary circle.

The lines y = ±ix pass through the points of contact of the

two unreal n-point tangents.

The shape of the curve (i) depends on the ratio b:c. It

degenerates if (0, 2c) lies on a line joining two vertices

of the regular polygon.
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If c=0, the curve has an acnode at the origin. The real

«-point tangents touch xs + y
l— b'

1
at the vertices of a regular

polygon. The curve has the symmetry of a regular ?«-sided

polygon; as is also evident from its polar equation

2
u' 1

b
n + r

K
cos nd = b

H+ n C\b
n~2

(b
2 - r

2

) +
" Cjr' {V - rj +... .

If c = b, the curve is

(2b - x) (" C.aT 1 ~

"

G<p**y* + " C
h
xn

-

Y -...) = 2
H~1

6",

or in polar coordinates

r
n' l

(2b - r cos 6) sin nd = 2
n '

1

b
n
sin d.

If c = — b, the curve becomes

r
n cosn0+2 n- lb"=O.

The curve has the symmetry of a regular ?«-sided polygon.

The n real ?i-point tangents are all concurrent.

Now take n even. We find that the curve is

17 {[c - b cos (2s + 1 ) Trjn] x + [b sin (2s + 1) tr\ n] y + b*— c'\

= b"(b
n+ c

n
)

(iv),

where 8=1, 2, ..., n. This may be put in the form

2"b
n
(b

n+ c") = b
n
(x + iy)

n+bn
(x — iy)

n

+ [ex + b
2-c2 + [(b'-c

2

)
(b

2 -c J +2cx-x l
) - b

2

yj}
n

+ [cx + V- c
2-[(V-c2

) (b
2-c2 + 2cx-x2)-b 2

yJ\
n
...(v).

As before, the real w-point tangents are the lines through the

vertices

[c+ b cos (2s + l)irjn, Z>sin(2s+ 1) ir\n~]

of a regular polygon perpendicular to the lines joining these

vertices to (2c, 0). If c = 0, the curve becomes

2»-ifi" _ r
n
cos nd = b

n + n
CJj

n~2
{b

2- r
2

)
+"G

t
b
n'\V- r

2

)

2

+...,

and has an acnode at the pole. If c = ±b, the curve is

r
n cosn6= 2

n ~
l

b
n

.

So far we have assumed that the unreal ??-point tangents

do not intersect on the chord of contact of the n real ?j-point

tangents. If they do, we show in a similar manner that the

«-ic can be projected into

II {x — sin27rs//?, y — acos2Trsjn} +aB =0,

i.e.,

2
n
a
n =(a + iy)

n +(a-iy) n
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when n is odd ; and into

n [x — sin (2s +- 1) tt/h, y — a cos (2s + l)ir\n) =an
,

i.e.,

2V = (a + iy)
n + [x+ (x* - y~ - a

2

)T + [x- (x*-y' - a
2
)*]",

when n is even. These curves have y=±ia as unreal «-point

tangents.

§ 5. Suppose now that n is even, and that an n-\c has

three real »-point tangents forming a triangle ABC and
touching at D, F, F, which are not collinear. Then a conic

touches BC, CA, AB at D, F, F (§ 1)*. It readily follows

that every real »-point tangent must touch this conic at its

point of contact with the n-\c.

Suppose that there are n such real ??-point tangents, which

may he taken as the lines of § 2 (i), and that the conic which
they touch at their points of contact with the ?*-ic is u = 0.

Then the equation of the n-'ic is

(l
x

x + m^y + 1) (l./c + mjj + l)...(l
n
x + m ny + l) = kuin . ..(}).

For assume this is the case. Then there cannot be another

real »-point tangent, as is seen by projecting it (supposing it

exists) so that it becomes y = 0, touching at infinity, while

u becomes 1 —ocy.

Wow suppose we had an (?i + 2)-ie with the n + 2 real

(?i + 2)-point tangents a,= 0, a
2
=0, ..., an+2

=0, touching the

conic u = at their points of contact with the (n + 2)-ic.

Using only the fact that they have two-point contact with the

(»j + 2)-ic, we readily prove that the equation of the (?i + 2)-ie

takes the form

«,«„•-«»«=«">,

where v = is some n-\c. Then, since a
x
=Q, «

2
=0, ...,

ant2=0 have 2-point contact with u = 0, they have »-point

contact with v = 0. But we have just proved that this is

impossible unless v= kuin. Now use induction.

The curve (\) has no real inflexion other than the points

of contact of the n real n-point tangents. It can have no
multiple point other than an acnode. This may be seen by
projecting u = into x

J ±y 2
=-l and the multiple point or

inflexion into the origin.

Suppose that m=0 is projected into an ellipse. Then,
if k= ±e, where e is a small positive constant, the curve (i)

* An n-ic having H-point contact at D, E and at least {n — ])-point contact at

F Las necessarily it -point contact at F.
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is one of two curves each approximating closely to tlie lines

of § 2 (i). Each curve has n circuits composed of two open
branches apiece, and one has also \n (n — 2) ovals and the

other has \ (n - 2)
a

ovals. The former curve lias n ovals,

each of which touches ?( = at one of its points of contact

with the n-ic and shrinks up into this point of contact as

e increases. The latter curve has an oval touching u = at

its n points of contact and approaching u - as e increases.

The remaining hi(n — 5) ovals of the two curves (n> 5)

shrink up one after another into an acnode and disappear.

§ 6. If an n-ic has two real »-point tangents, we may take

them as z + y = and z -+- x — 0, their points of contact as

(1, 0, 0) and (0, 0, 1), and any point as (0, 0, 1). Then the

equation of the w-ic becomes

z (x*~
l + xn~ 2

y +...+y
n~ 1

) + xy {x
n~2 + xn~3

y +...+ y
n~2

)

= (z + x)(z + ?j)u (i),

where u is homogeneous of degree n — 2 in x, y, z.

If (0, 0, 1) is an («— l)-ple point, u = 0; as pointed out

in Paper 1.

If (0, 0, 1) is an (n — 2)-ple point, u does not involve z.

Eliminating u between (i), and the result of differentiating (i)

partially with respect to z, we see that the points of contact

of the tangents to (i) from (0, 0, 1) lie on the result of

dividing

y'(x-\- z)
2=xn

(y + z)
2

by x—y. Tins curve is the locus of the point of contact

of tangents from the (n — 2)-ple point of all ??-ics with a given

(n — 2)-ple point and two given «-point tangents at given

points. If /* is odd, the curve is that discussed in § 5 of

Paper I. If n = 2m, the curve degenerates into

z(xm ±ym
) + xy(xm

~
1 ±i/t

-
l

) = 0.

§ 7. The curve

is the curve discussed in § 3 of Paper I. It is the curve into

which can be projected any w-ic with an {ii— l)-ple point

and two real w-point tangents.* The curve

z {x
n -

1 + 2j
n -

l

) + xy(xn - a + y
n - 3

) = (i)

* If n-2m, while the «-ic has an (n— l)-ple point and two tangents, each

having m-point contact at two points, the equation is

( I + b)m {z + y) (x- + ay*)m = ( 1 + a)"' {z + x) Qr +Mm
;

which reduces to the above on putting a = b = 0.

D2
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is the curve into which can be projected any n-ic with an

(n — 1 )-ple point G, having- DA and DB as (n — l)-point

tangents at A and B, and touching at D the harmonic
conjugate of DC tor DA, DB. The corresponding curve

in the case in which A, B are conjugate unreal points is

r cos (n — 2 ) 6 = a cos (n — 1) 6.

Tills is the particular case of the curve

rcos -— 8 =a cos - 6 (ii),

q q

where p> q, obtained by putting p = n — I, q = l. If EOSF
is a line such that OS=a, E0= SF=aqj (p- q) and the

angles PSF, pPOF\q differ by \tt, P traces out the curve

(ii), being the pole. The properties of curve (ii) are very
similar to those of the curve

r sin^-2 = a sin
7- 6 (iii)

9. 9.

given in § 5 of Paper I. In fact, the two curves are identical

if q is even, as may be seen by turning one curve through an
angle \qir about the pole in this case. If q is odd, the curve

(ii) is of degree p + q, has a £>-ple point at 0, and a ^-ple

point at S. The curve has singularities at the circular points,

whose nature is the same as that of the origin in y
q—xv

.

The curves (ii) and (iii) share the property that all their

inflexions are collinear, that the points of contact of the

tangents from a circular point lie on a line through the

other circular point, that their asymptotes are concurrent at

[— a/(» — 2), 0], and that the points of contact of the other

tangents from this point lie on the line 1r co%6 — a.

Other interesting properties are that the points of contact

from any point on = lie on a circle, and that all such

circles form a co^-axial family with and S as limiting points.

Also the inflexional tangents touch the conic with and S as

foci and touching the line of inflexions. Again, the tangents

to either curve at its intersections with a line perpendicular to

6= touch a curve of the third class.

The transformation x = re® 1

, y = re~^ 1
, z = — a converts

curve (iii) into

f(x + zy=x*(!/ + zy (iv);

and converts curve (ii) into

f(x + z)" + x 1,

Qj + zy=0 (v),

when q is odd.
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Similar results hold for these curves. For instance,
\x + fiy + vz = touches (iv) at (uv - v, u — 1, -u+v),
where u = t

p
, v = t

q
, if

. ^ = V v

~(p-q)uv + pu-qv u (- qu + pv -p + q) -^C^- 1/"

The condition for an inflexion is

(p-q) (uv + u- v -l) = 2p (u - v) (vii).

Eliminating u and v between (vi) and (vii), we get

(p - ?)
2 - M - m) = (p + qy x^

as the tangential equation ot a conic touched by the inflexional
tangents, by the lines x = 0, y= 0, x + z = 0, y+ z— % and
by the line of inflexions

( p — q) (x + y) + 2pz = 0.

§ 8. If three n-point tangents of a real n-ic are concurrent
at (being either all real, or one real and two conjugate
unreal), their points of contact are collinear. This is at once
seen by taking two of the n-point tangents as ax'

i+2hxy+by 2= 0,
touching at infinity, and the third as y = 0. If there are
n such n-point tangents meeting at (0, 0, 1), their points of
contact are collinear (on z = 0, say), and the equation of the
curve takes the form

a
Q
xn
+ a^

n~ l

y +—+ a
n
_,xy

n- 1 + a
ny

n + Icz*= 0.

If there is another n-point tangent, we may suppose that
there is a real n-point tangent touching on y= and passing
through (0,1, 0), or else that there is a pair of conjugate
unreal n-point tangents touching on y = and meeting on
x = 0.

^
In either case we have a,= a,=...= aB_ 1

=0, and the
curve is projectable into

xn+yn=zn
(i).

This curve meets x = in n points, at which the tangents
have n-point contact and pass through (1,0,0); and similarly
for y = 0, z = 0. Of these 3« n-point tangents three are real
with collinear points of contact if n is odd, and four are real
if n is even.

The curve may be projected into an oval with two per-
pendicular axes of symmetry if n is even, and into a three-
branched circuit, having the symmetry of the equilateral
triangle, if n is odd.

The n-ic (i) has no double point, and must therefore have
3n(n-2) inflexional tangents and \n (n — 2) (n — 3) (n + 3)
bitangeuts. Of the inflexional tangents n — 2 coincide with
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each w-point tangent. Of the bitangenta |(n — 2)(w — 3)

coincide with each n-point tangent. The remaining

in* (n- 2) («-3)
bi tangents are

, . ., . , (1 + ill) IT
(_ \)l+m sm«-l V ^ '

Z

Mi-.. i It , n r -r 1
m7r

= (- 1)* eh™ln sin'*-1 x + (- l)w e*"-'/'* sin""1 ——
- ?/,

where Z, m are integers greater than zero and l + m = 2, 3,

...,w-2; while A, A = 1, 2, ...,«. Of these i(«-2) (n-3)
are real with unreal points of contact if n is odd, and

2 (n — 2) (h — 3) if ?« is even. The rest are unreal.

The bitangents are obtained by noticing that, if z = \x + /xy

is a bitangent, (\t + /"•)"— t
n — 1 has -a factor which is the

square of an expression of the second degree in t. This

expression must be a factor of /t(A< + fi)
n

' — 1 and of /if""
1— X.

Now equate each of (Xt + fi) fiV(n-\) and i (/Lt/X.) 1 -^"- 1
) to two

different (n — l)
th

roots of unity, and we get equations to

determine \ and fi.

ON LAPLACE'S THEOREM ON SIMULTANEOUS
ERRORS.

By L. V. Meadowcroft, B.A, 31. Sc.

A very remarkable theorem on simultaneous errors was
enunciated by Laplace on p. 8 of the first supplement of the

Theorie Analytique des Probabilites. No demonstration is

given, the matter being dismissed with the characteristic

remark, "L'analyse du no. 21 du seconde Livre conduit a ce

the"oreme general . .
." The theorem is as follows: Suppose

that n quantities x, y 7
z, ... are to be determined from s

observational equations of the type

a tX + liy + C(Z +...-&= 6j,

where the quantities a», hi, Ci,...,q; are known, and e,,e
2

, e
3

, ...,e,

are the unknown errors of observation. Let values be found

for x, y, z, ... by the most advantageous method, and let these

values be xv y„ «„ ... . Put

z = z
l +ij, y=y l +v, * = *,+ £ ••.,
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then the probability of the simultaneous existence of £,17, £ ...

as errors of the quantities to be determined is proportional
to e ", where

<r=-
s 2(atf + Ji, + CiC+..,)'.

Laplace assumes that positive and negative errors are equally
probable, and that the function of facility of error is the same
at each observation. The theorem is, however, still true with
a slight modification if these assumptions are not made.

The theorem was noticed by Todhunter in his History of
the Theory of Probability (p. 610), but a demonstration was
omitted for want of space. The omission was repaired in
a subsequent paper,* dealing with certain developments of
Laplace's method, in which considerable importance is attached
to the result. The demonstration is based on an extension
of Laplace's fundamental theorem (as set out by Poisson),
involving the calculation of certain multiple integrals, and is

valuable as extending the general theory. The object of the
the present paper is to furnish a proof from considerations
based on residual errors. In spite of its simplicity it would
appear that this method has not previously been employed.

I.

—

Note on Multiple Integrals.

On p. 390 of the Tkeorie Analytique des Probability Laplace
indicates a result which was subsequently expanded by Tod-
hunterf into a general theorem on definite integrals. The
theorem is as follows: Let

let e~u* be integrated with respect to each of the n — 1 variables

*u s
a>

••» zn-n between the limits — co and +00: then the
result will be

err**',

where
a,a a ...a_ ,a_

i=as+ ^: + 'vzv + ...+s
7 « «„_, a *

Some extensions were given in a subsequent paper.
In the following analysis it is necessary to evaluate multiple

integrals of tne type
,-CO ..00 ,.0

J -00 J-ccJ-

* Cambridge Philosophical Transactions, vol. zi.

t History ofthe Theory of Probability, p 51H.
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where xv yr sv ... are the values of «, v, w, ... which make
2/t(o»M + biv + Ciio...— qi— ki)* a minimum, and the object of the

present note is to present the integration in a symmetrical

form by means of Gauss's notation. So far as is known the

results have not previously been presented in this form, and

certain of them are believed to be new.

For the sake of simplicity only three variables it, v, w
will be taken. We may write

2>- k O, + «) + &i(.v, + v) + c, o, +»)- qi - hiY

= '2ji(ajU+ biv + Ciio — 8i)'\ the S's being independent of u, v, w
%

= u? 2 aiji + v* 2 bt
l

ji + v
2 2 cCji

+ 2 uv 2 aibiji + 2viv2 b{C]ji + 2 wu 2qa^
-2M2ai8,-ii-2v26i

8
ii/i -2Mj2ci8^£+ 28^ (1).

Suppose that this expression is equal to P, -+ ( (?
(

m? + ii!,)
2

,

where P, and P, are functions of u and v, and (), is a numerical

factor. Then, integrating with respect to w, we find

C e-Pi-(Q>™+n>r-dw = ^e-Pi.
J -00 Q\

Now Q?="Zciji,

Q
x

R
l

= 2c;yj (a
4
-w + biV— Si), •

P
1
+ P; = ^(aiW + ^-^) a

-and
Therefore

P
1
= 2y£ (a£M + ^y-Si

-)
3- [2 Cjji (apt + &fV - Bj)J

2 c^Ji

On expanding this expression we readily find that

y I 2Z-iji-

2m 2aA/;+ 2wv [„
. . 2ai

r
i ji 2biei

')

i

ZCi'ji

ZCiJi J

^aiciji'2ci\ji~

On comparing this expression with (1) we see at once that

it is derived from it in a symmetrical manner. The terms

in to have disappeared, and the coefficients of the remaining

terms are all altered in the same manner. If we write

Z'c i.)i

\a i
b

iji
.\'] = ^aibiji
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we have

P, = ic [aiCiji.l] + v* [bfiji.i] + 2uv [o.ihji.1]

- 2u [oAji. 1] - 2v [b&ji.i] + [Sihji. 1]...(3).

Hence, on integrating with respect to v,

where Q.{=[khji^'] (4),

and P
2
= u

2

\_aftji . 2] - 2 M [a,8tf« . 2] + [8fSJi . 2],

if we write

r • oi r • 11 [aih)iAJ

r s • «n r V ' -n L
a Aj';- l][M»./i-l]

[a^.2] = [a^.l]
lJJjrr]

.

Finally, on integrating with respect to w, we have

J -CO ^3

where ^^[^a^.2] (5),

and _ P = [S^.3].
It is easily seen that

P
3
= minimum value of 2/; [ai (x l

+u)-i-bi(i/
i
+v)+Ci(z

l
^ w)-<li-h\*

= -ji (°ix\ + hy x
+ ci

z
l
- qi- ktf.

Hence the triple integral

IT"1 r - » • m

[ciCiji] [pibiji . 1] [aiaiji . 2]_

where A = Sa^ 'Stoibiji Sa»c^

g-^lfli^+ijyi+ciartt-id*
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The result is readily extended by induction to the case of an
M-tuple integral with variables u, v, iv, ..., its value being

(6).

Similarly we shall find that

/.GO .00 »0o

...cr-%i*(a&***>*w...'PdudodtD (n variables)

....(7).

The connection with Todhnnter's theorem is obvious, and
indeed the latter can be derived as a particular case. A
comparison in particular cases would, no doubt, give rise to

algebraical identities. Thus, tor two variables

i + v+w
a

.i
a

2 °\ a \~a 2~a
a

and for three variables

a* a,- a? a?

a*+aft\ -««**i

-aftti
a

t>+aX

a. a„ an a.

a*+a*b. - a3.

aft, a
2

7

+aft\ o3.

aft, a
a'+aft*

results which can be easily be generalized. Further identities

may be obtained by performing the integrations in different

orders and equating the results.

It should be noted that in the course of the above analysis

it has been shown that the minimum value of

2ji (oiiU + b{v + Ciiv +...— Bi)
2

is [BiSiji.n], a known result.

Since x
x , y x

, z
x
, ... satisfy the normal equations

x
^
2 a * ji + Vx 2 aihji + z, 2 aiCiji +...= 2 (q4 + k{) a {ji

x
x
2 afoji + y x

2 hfjt + z
x
2 b&jt +...=» 2 (#+ / •) /,,•/,•

a;, 2 ctfpiji + y x
2R^ + a, 2 c/yt

- +...= 2 (qt + ^) c^
...(8),

it is clear that [a
i8^] = [^g ( / (

-. 1 ]=...= 0, and that many of

the terms in the above analysis might have been omitted.
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Tliey were retained for the sake of symmetry, and also because

it is not essential that the values of x
t
, yv zv ... should be

introduced at all. By using determinants the same method
may be employed in t he case of a general quadratic expression,

provided that the coefficients satisfy certain conditions.

II.— On Laplace's Theorem.

If <j>i(x) is the function of facility of error at the i
th

obser-

vation, we have

J
4>i(x)dx =1,

x<j>i(x)dx = ki,

x
i

(pi{x)dx =/c/,
J -00

so that hv /.
-

2
, ..., k

s
are the mean errors, and &,', k

3\ ..., k
8

'

"the errors of mean square. Then x
{
, y r s,, ..., the most

advantageous values of x, y, z, are given by the normal
equations (8), where

Let us suppose, in the first place, that

f*(*)-2^ H<MWttfl (°)'

It is easily verified that

2hiS/ir)-v

-^— C xe-{^-mW}dx = ki,

so that this function has the same mean error and error of

mean square as the more general function referred to above.

If now the errors in a?,, yv zv ... are £, 17, £, ..., the true

values are

xi+ti Vi + % *.+ £ .-,

and the residuals are of the form

ai(x
l
^^) + h

i (y l
+ v)+ci

(z
l
+l;)+...-q

i
= €i .



46 Mr. Meadowcroft, On Laplace's theorem

We have therefore to determine the a posteriori probability of

this system of residuals.

This is proportional to e-2 {(«*-**)
2
/
4*fl, i.e. to

e-I,[{<ti (xl
+&+bi (yl

+il)^i {z1+Q+...-qi-k{}mht*].

Let p denote the probability that the error in x
x

will lie

between £ and % + d!;, that in y x

between 77 and rj + drj, that

in z
t
between £and £+ <:/£, and so on. Then, since a priori

£, 77, £, ... may have any values between + <x> and -co,
we have

e-ZkMa{(x1
+^)+bi{y l+n)^ci(zl+l)+...-gi-h}

i

.
..e-SiJ,-{a<(a;,+M)+Wy1

+»)+c,(z
1
-Ho)+...-?,-*,-}

2
c?M <^v c?w

J —00 J —00 J —00

xd£dv d£ (10).

Now the index of the exponential in the numerator (dis-

regarding the negative sign)

= i^ji{ai^ biV + <--i^'--Y+i^ji^ l
+hy

i
+ ciz

l

+...-qi-/qY

+ 2%^jiai( aixi+ hy x

+CiZ
t

-\ ...—qi—ki)+ similar terms in 77, £, ...

- iS/i (
a£ + hv + CiC+...)"+ 12ji

(a ix
i
+ %, + ciz

l

+...-q i
- ktf,

since the coefficients of f, 77, £, ... vanish in virtue of the

equations (8).

The value of the integral in the denominator is

f e
_isy.

(
«,.Xl+%1+c,21+ ..-fl-fc)* by (6).

Hence ^ =-^ e-^./t(«£+^+^+...)2 dgdndg- (1 1)

.

This agrees with Todhunter's result; the numerical factor

was not given by Laplace.

It remains to establish that the formula is still true as

a first approximation in the general case and that it involves

the same degree of approximation as is adopted throughout

Laplace's investigations.

If the error laws are <£, (x),
2
(cc),

<f> 3
(x), ..., <j>,(x) with

mean errors kv k
2
, k

s,
..., k

s
and errors of mean square £•/, k

t\

k
3
\ ..., kj the first part of the proposition is obvious, since

the particular error laws (9), which have been adopted, have

the same mean errors and errors of mean square ; they are in fact

the natural first approximations which modern theory suggests.

Moreover, it is not difficult to see that the degree of approxi-

mation is the same as results from the application of Laplace's

fundamental theorem, and Todhunter's extension of it, to

linear combinations of the observational equations. In
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Laplace's analysis the results are exact until approximate
values are taken for the integrals

4>i(z) cos7^ xzdz,

<f>i(z) sin yiXzdz.
J b

The approximate values taken for these integrals are 1 —
and xjiki respectively (higher moments than the second being

ignored). Now —,—— e-K*-^-)
2
/-1^2

} has the same area as 6;(x)

and the same first and second moments about the origin,

so that if

we have

(»)-5^-HMWttfl'+/«W

fi(x)dx = 0,

xfi(x)dx = 0,

x*fi (x) dx= 0,

and the functions^ (a;) do not enter in any way into Laplace's
fundamental result.

It is a matter of some interest to show that the formula for

p leads to Laplace's result for an error of given amount in x
when the errors in ?/,, «,, ... are unrestricted and may have
any values between + co and — oo . Thus with three variables

the probability that the error in x
x
will lie between f and %+ dt;

J —GO J —00

w* Q x Q,

This result easily follows by observing that the course of the
integration is the same as for the integration in the denomi-
nator of p in (10), the final index of the exponential being
the same as the term in u~ in P

3
+ (Q3

u f RJ\
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Now

V
* 2

6

Q; Q: 2
2

[2 hfjt 2 etf, - &bfijiT]
'

Laplace's result is j-e-Z2^"2
d%, where *r = A, and A, is

given by 2/oJtt

1 = Tffi 0(" ji + fi 2 aA/i + v 2 flucj<

,

= \ 2 a .biji + /* 2 Vi* + v 2 6a /*

,

= \ 2 OiCiji + fi 2 JiCf/i + v 2 c/j"i

.

The results are readily seen to be identical.

Similarly if it is desired to determine the probability that

the errors in any assigned number of the variables shall have
given values, the errors in the remainder being unrestricted,

the result can at once be written down in a symmetrical form
by using the formulae derived in § 1.

It is of course clear from the modern theory of errors that

the method adopted above of working with the particular

exponential laws (9) by the method of residuals will enable

us to derive not only this particular theorem of Laplace's,

but also the whole of his results. Jn most text-books on the

subject, however, only the normal error law is employed in

this connection. Jt can hardly be doubted that many
advantages would accrue if this extension were more
generally adopted; in particular it leads to a direct proof

of the method of least squares, whereas in Laplace's method
it is necessary to be content with an a posteriori verification.

On pages 19—21 of the first supplement Laplace observes

that all his analysis rests on the assumption that positive and
negative errors are equally probable, and proposes to show
that this limitation does not practically affect the value of his

results. Todhunter* expresses the opinion that no great

conviction would be gained from the investigation. It is,

however, not known how Laplace demonstrated his theorem
on simultaneous errors. It can hardly be doubted that if it

had involved the same type of analysis as Todhunter's proof

he W011I9I have given some indication of his method. On the

other hand portions of the first supplement itself suggest that

Laplace may have used the method of residuals, whilst on
page 390 of the Thiorie Anahjtique ... a result on integration

is given which has been utilised in reducing the multiple

integral in (10). It may well be, therefore, that Laplace
had a more solid foundation for his generalisation than his

analysis would suggest.

* History of the Theory of Probability, p. Gil.
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FOUR-VECTOR ALGEBRA AND ANALYSIS.

Part II*

By C. E. Weatherbum, 31.A., D.Sc.

Fouit-Vector Analysis.

A.— The differential Operations.

§15. Differentiation of vectors. Pointfunctions. Let a be
a four-vector function of the scalar variables s, t, ..., and
Sa the increment in the vector due to an increment 8s in the

first variable, the values of the other variables remaining
unaltered. Then the limiting value of the quotient 8&j8s
as 8s tends to zero is called the partial derivative of a with

respect to s, and is written

3a _ Lt
8a

ds t s ^q8s
'

This is itself a four-vector, and in general also a function

of the same variables. lis derivatives with respect to s, t, ...

are written
'

<Ta <fa

ds* ' dtds'
'"'

as in the case of algebraic functions. And what has just

been written in connection with four-vector functions is

equally true of six-vectors.

Products of vectors are differentiated according to the same,
rules as in the algebraic calculus. Thus

9 r„ i\ ?a _
,

3fi

ds * * & 3s

3 ', • . » • ds, . 3b
^-(axi)) = — xHax.-,
OS . OS OS

|[*Tt] *M«w>jK«*a.
and so on. Li the case of cross products the order of the

factors must not be changed without altering the sign of that

term. The above formulae are simple consequences of the

distributive law.

* Tart I. was published in vol. xlix., pp. 155—176.

VOL. L. E
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When the function considered (whether a scalar or vector)

is a function of the coordinates x, y, z, l= ict of a point in

Minkowski's four-dimensional space, and has a definite and
unique value at each point, it may be called a single-valued

'point-function. Such a function <p will possess derivatives

dx ' dy '

'"'

with respect to the coordinates of the point.

When by the orthogonal transformation of §1 the variables

x, ?/, z, I are transformed to x', y', z ', I the function <p becomes
si function of the latter variables. To find how its derivatives

with respect to these are related to those with respect to the

former set we notice that

8£ _ Sg 3jb <ty _§y d$d^
<Lt ^L

dx' dx dx' dy dx' dz dx' dl dx

dx

d<p d(j> , d(p

while similar values may be written down for ~, — 7

dd> .

dy dz
—, . Jf then we form the matrix of operators

,7-11! a. a ail

Wdx* dy* a«' a/lr

the above formulas show that

H a a d a

and

d'
dx ' dy' ' dz' ' dl'

a_ a _a a

dx ' dy ' dz ' dl

au a
2

a..

dA (1).

a a a a<
That is to say the set of four operators L

\dx dy dz dl)

is transformed like a four-vector. We shall adopt the notationf

t The symbol D was introduced by Cauchy to denote the operator

dx'
+
df

+ '"+
dl"

for which we use D 2
. This alteration makes the notation run parallel with that

for three dimensions.
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n =i*+\ *+**+%* (2)
d-c cy cz ol

for this four-vector operator, which is analogous to the

operator

d-c dy dz

of three dimensions. In terms of the dyadic A of § 9, we
in aj write

' = A«D (1')

as the equivalent of (l).

§ 16. Four-vector gradient of a scalar point function.

Let rf> be a scalar point function. Then by the preceding

section

f |$ 4t|*, +.„+1)|=A .( i^ +^ +...+ !,|*)
ex dy Ol \ dx dy oU

which we write briefly

n'<j) = A*0(p.

Thus D#Bt j*+ fjj* + *fi.t |U (3)
ox dy dz 31

is a four-vect<>r, and by analogy with the three-dimensional

function is called the four-vector gradient of <j>. Its scalar
A

product with the unit vector & = (a,, a
3

, o
3

, a
4)

is

r l dx 2
dy 3 cz 4

8/
v ;

and may be called the directional derivative of for the

direction of a. In particular

dd> d<f> d<p d<p

dx ' dy ' dz ' 3/

are the directional derivatives along the coordinate axes.

An important case is that for which <p = 11", where
B = *J{x

2 + y'+z'+P) is the "distance" of the point from the

origin. Then

9tf> 7?n-l9#nR1
'

1 " =nRn
X

dx dx li

and therefore

aRn=nB n-2

X = nJl
n- l

K (5),
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where X = xi + y) + zk f Zfj

is tlie "position four-vector" of the given point, and X the

parallel unit vector. More generally, if V is any scalar

function of B, we find in the same way that

Further if r. is the position four-vector of a point P, and
r. + 8r that of a neighbouring point P\ the difference

Sr=fcct+fyr + &8it + 8Zfj

is also a four-vector; or, in the notation of differentials,

dx = dx \ -\ dy ) + dz fc + dli)

is a four-vector. Hence for a point function <p

df D(j> = [dxi-\ dy)+...) ' (^ i + ^ J +•")

^dx +^dy+.^dl
dx dy cl

"=<ty (
7
)>

where d<p is the increment of <j> in passing from PtoP'. This

formula is analogous to

dr*V<j> = d(l)

in the case of three dimensions.

§ 17. Divergence and curl of a four-vector. Similarly we
may define functions analogous to the divergence and curl of

an ordinary vector. If a is a four-vector point function, its

scalar product with the symbolic vector, D is invariant with

respect to an orthogonal transformation, and has the value

= ^ + ^ + |L3 + |, . (8)

."

ox cy oz dl

This is sometimes called the divergence of the four-vector a,

and is abbreviated diva. With the notation a = (a, oj we
may write

rl I

diva = n.a=v.a+ *
(9).
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In tlie same way the cross product x a is a six-vector,

which may be called the curl of a. Thus

,
3a

curl a=Dxa = Sta;x^—
dx

_ /9a
3 _ 3a

3
3a, _ 3a., da

t _ 3a,

\dy dz ' 9^ 9flj
' 8.0 dy

'

3a, 3a, 3a
4

oa
2

3a
4

3"A

3^~"3/'3i/""37'3^
-
^/

Witli the notation a= (a, aj we may write this more briefly

xa = (vxa, v« 4 -^) (
10 )-

If ever it is convenient to use the expression a x it should

be understood as — n x a. In the case of the position four-

vectorht, it is worth noticing that

•t = 4, nxr=0 (11).

Finally we may form the cross product of and a six-

vector point function JF, which is a four-vector. Minkowski
denoted this product by lor jf in honour of Lorentz. Thus
if <t> is the anti-selfconjugate dyadic corresponding to jf,

lordF = DxdF=-D»*

=
(8VI2+l/,3+ aV-)

i+(^ +|/- + l/
/-) 1

+
(3
1/^ 9V-+

9V^ +(a/^|^4/"> ••<»>

With the notation Jf = (f,, f„) this may be more conveniently

expressed

xdF = (vxf, + ^, - vf,) (12').

§ 18. Second order differential functions. By operating on
the Jibove functions with the vector operator we may form
certain second order differential functions. Thus taking the

divergence of D<p we find

D D^-^? +
3/

+
3?

+
3?

(13) '

This is often called the D'Alemhertian of <p, and is analogous
to the Laplacian V*Vtf> = V </>• In agreement with this

£2
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notation, and also with the notation for the square of a vector,

we shall write the expression (13) as a'<j>. Thus

nV = div g,,d , =g + |. + ...+p (.30.

If in the same way we form the curl of <£ we find that it

vanishes identically. Tims

DXD^ = (14),

as we should expect from the symbolic product X ap-
pearing in the expression. In the same way it will be found
that div lor JF vanishes identically. Thus

•xjF = (15),

the scalar triple product having the repeated symbolic vector .
Finally, if we take the lor of the dual vector to curl a, we find

that it also vanishes. Thus

Dx(nxa)* = o (16).

This agrees with § 12 Cor., according to which such a product
with a repeated factor should vanish. However, lor curl a
does not vanish, but will be found to have the value

x (a x a) = an.a-D ?
a (17),

which agrees with (17) of § 12, and is analogous to the formula

V x v xa = VV»a- v'a

of three dimensions, and may be proved in the same wayf.
There is one other formula which may be mentioned here.

If JF is any six-vector

DXDXjFx(OXQ x jF*)* = -D a
dF (18).

To prove this write JF = (f,, f
t
). Then

xdF=(vxf
l
+ ^, -V-f„),

and therefore

DXDX,f= VX I V X f, f 5

-vv.f,-|.vxf, + ^;

t Cf. the author's Advanced Vector Analysis, Art. 9.
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Similarly

(QXDxjFV

-{-VV.«-|(vxt +g).Vx(vKt +©}.
and the sum of these, got by adding their like components, is

equal to

-(Vf^g',Vf,+^) = -D'(f„f,)— p'dF,

It will be noticed that this formula corresponds to (26) of

§ 14, with each of the four-vectors replaced by the symbolic

four-vector a.

§ 19. Formulas of expansion. It will be found convenient

to have formulae of expansion for the curl and divergence

of a vector point function of the form uB. or a x Jf, where u,

a, jf are themselves point functions; and also for lor(a x t)

and the gradient of a product of functions. The formulae at

which we arrive may be expressed

d (uv) =unv+ vau (19),

.(«a) = n«»a + ?<n«a (20),

x (wa) = Diixa + tiDxa (21),

n-(ax dF) = jF.n xa-a-DxjF (22),

x(axfc) = fi«na-a-nt) + an«fi-&n«a (23),

n (a»t) = 6»na + a»nii + txa xa + axaxi)...(24).

The first of these is obvious from the rule for differentiating

a product. To prove the second we m;\y proceed
r\

D«(«a) = St»5-(«a)

ox J ox

= Dwa + iiD «a

as required; and (21) may be proved in the same manner.
Similarly in the ease of (22) we have

= dF'Dxa-a«nxjF,
as was to be proved.
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To establish (23) we have similarly

Dx(«x«-aix(gxft + axg.)

V 8x* 3.1; / V dx dx/

= t • na— a • u\ + ao • 5 - in • a.

In this formula 6 • Da is the scalar product of I) and the

dyadic

v .3a

which will be further considered in § 21. The expression

may also be interpreted as

(» o) «-(»>| + ».£+...+». |) a,

which is V&' times the derivative of a in the direction of ft.

Formula (24) may be proved in like manner.

In place of (23) we could write, by § § 10—11,

d x (a x 6) = - d • (at) - 6a)

= D.(ba-afc) (25),

which will be further considered in the next part of this paper,

where also another formula will be found which is the equi-

valent of (24).

§ 20. The function Rn
. We saw in § 1G that if R is the

"distance" of a variable point from the origin

oR" = nR n
~'X,

where t is the position four-vector of the variable point, and

Rs = f. Hence by (20)

BiT=o.o22B = Ha.(BB
-*c)

= n(aR"-*.t + R"- 2
a.x).

Then since D«t = 4 the equation reduces to

tfR
n = n\{n-2)R"-i? + 4R" J

}

= n (n ^ 2)R'-' (2G).

Jf ii = or —2 this expression vanishes. The first value for

n makes R n
a constant. Taking the second value we have

°'^=° ^
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showing- that 1/iT is a solution of D'Alembert's equation.

More generally, it' V is a scalar function of R, we have

by (6)

/dV.-\ fV' \

-.ffl
f" F\ » r

q T/'

= F" +^ (28),

dashes denoting differentiations with respect to R.

B.

—

Dyadics involving a. Differentiation of dyadics.

§ 21. 27*e dyadic d0. In addition to the scalar and vector

products of the vector operator and a four-vector g con-

sidered above, we may form the open product d0, which is

the dyadic

dx dy dz al

and similarly the conjugate dyadic

80 . 80
,
80 .

, 80 . ,..

SD=^-t + ^r + ^-fe + rr7 ^ (2 .

3fc By cz dl

And each of these is a four-dyadic, because is a four-vector

and is transformed in the same way as a four-vector. The
dyadics so defined are analogous to the dyadics VS and SV
of three dimensions, and will be found equally useful.

If a = (a,, a
2
, a

3, aj is a unit four-vector the product

a .( D 0) = a
l
-+a

s^ + a,^ + a
4^ = (a.o)« (3)

is a four-vector representing the directional derivative of for

the direction of a. It will be noticed that this result is of the

same form as (4) of § 16 in the case of a scalar function.

And further if and I f/0 are the values of a vector function

at the points whose position vectors are r and t + cft, we have

dx. as = (dxi + dy) +...).
(^

d

B
* + )^

+

= c/0 (4),
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which corresponds to the formula

dx.n$ = d<p

found in § 16.

We may also remark that the scalar of the dyadic Dg is

= D.g = divg (5).

Similarly its vector is

= x g = curlg (6).

The scalar of g D is also div g, but its vector is — curl g.

Consistently with the previous notation we may write

^8g . vg.D = 2^-.t = div0,
ox

3g
iSxn = 2^-xi =- curl g.

dx

It should be observed too that the six-vector x g corre-

sponds to the anti-selfconjugate dyadic (ag — ga), and is

equal to half its vector (§ 11). Thus if fo is any four-vector

fix (a xg) = -t).(Dg-ga) (7).

If is a scalar point function Dcp is a four-vector, and DD<£

is a tour-dyadic whose vector is x D0, which vanishes

identically by § 18. Since then its vector is identically zero,

the dyadic DD0 is selfconjugate.

Ex. Shew that DC = I, where V has the usual meaning.

§ 22. Differentiation of dyadics. If at) is a dyad of four-

vector point functions, we define its derivative with respect

to x by the equation

d . ., 3a . db— (a fi = ^ to + a^

,

dx dx dx

the open product being differentiated by the same rule as

other products. Similarly if 4> is a dyadic whose antecedents

and consequents are four-vector point functions, we define

— <t> as the sum of the derivatives of its dyads.
ox

Forming then the scalar product of Q and the dyadic 4>,

we have
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a four-vector winch Minkowski denoted by - lor <1>. We
have already met a particular case of this, viz. lor B\ when
the dyadic <I> was anti-.selfconjugate. Similarly we should

attach to 4>«a the meaning

*.D = s|?.t=Si.^-D.*a
(8'),

dx dx c

the dyadic <I> used as a prefactor to being1 equivalent to its

conjugate (i>
c
used as a postfactor. Finally we could define

the function

^ • 3* 3$ *. 3* ,^

dx dy dl

which is a dyadic whose antecedents are six-vectors and whose

consequents are four-vectors. Such mixed dyadic3 have their

use in the vector analysis of Relativity, especially in General

Relativity; but a discussion of their properties will not be

entered into in the present paper.

There are also two important symbolic products in which a

occurs twice in association with a four-vector tf. Thus

, . /.3» .38, , .30

dx* dy'
+

dz
l + dP

= '* (10),

which should be compared with (13) of § 18. Similarly

3a;

3 /*,. 3^

= D (n.0) = grad divg (11).

§ 23. Formulae of expansion. Various useful formulae, in

some degree analogous to those of § 19, will now be proved.

Consider first the formula?

a(a-fo) =Da.i) + ofc.a (12),

n.(au) =n.ab + a«Dfc (13),

d x (a xb) = a.(6a-au) (14),
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in which D is to be understood as operating only on the vector

next to it, unless brackets are used to indicate the contrary.

The first and third of these are alternative to (24) and (23) of

§ 19. To prove (12) we may write

B(..i»-*i(g.. +..g

(»«S-*(>«S-

Similarly in the case of (13)

'da r

= 2t.^ b +

= o»afi + a»nf>,

as required. Using this result we may write the expansion

for x (a x t), found in § 19, as

d x (a x 6) = d . (fe a - a t>),

thus providing (14). This formula is also obvious from the

fact that a x b corresponds to the anti-selfconjugate dyadic

at) — I) a, and therefore

d x (a x f>) = - n • (a 6 - 1 a)

,

which is the same as (14).

Again if w, a, 4> are point functions—scalar, four-vector

and dyadic respectively—the following formulas hold:

a(ua) =aMa + MDa (15),

D • («*) = D«.* + «D'<I> ( i G).

For in the case of the second of these

"•<->-«•(£•+£)

-(*£)—•«•£
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and (15) may be proved in like manner. The corresponding
formula

D X (ufP) = Dl(X$ + HDX$ .(17)

also holds; but this again is an equation of mixed dyadics,
with which we have decided not to deal. As a particular case
of (16) we may notice ,'

D»(iil) = nu (18).

Lastly we may easily expand the expressions

•($»a), Dx($«a),

where and a are point functions. For

'c<P _ 3a>

= (a.$).a + (4>
c
.Da)

8 (19).

The last term, which is the scalar of the product of <J>
c
and

a a, may equally well be written ( a •$„),. Similarly

ox(<i>.a)=Stx(|^.a + 4>.^
1

)

= (d x$).a + (na-f
c
)
c (20).

In the first term of the second member D x <£ is again a
mixed dyadic whose antecedents are six-vectors and whose
consequents are four-vectors. But in scalar multiplication
with a it yields a six-vector, as required.

In closing this paper we may point out that

d. ($ x a)= 2 1. (^ x a + $ x ^)
\ ox dxj

= (D«4>)xa+ ($ c
'Da)„ (21),

each term being a six-vector. Also that, if the dyadic <£ is

constant,

*
•
J| )

=

.(22).
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ON A DIOPHANTINE PROBLEM.

(Third Paper).

By H. Holden.

1. In a previous paper* Legendre's system of equations

was solved by writing them as

x'
, +y

2 = 2c\

y
2 +z* = 2a

8

,

z*+x' = 2b*.

Using for the first two equations the linear relations

(jfc
1 -2k -l)x-(k2 +2k -1)^ = 0,

(m 2 -2m - \)y - (m2 + 2m — 1) s = 0,

it was pointed out that smaller solutions would probably be

got if 7c
3 — 2/»; — 1 and m*-\ 2m — 1 could be made equal. A

method for doing so was shown, but it would have been simpler

to have put k = m + 2, when we get

X = mi + 6»* + 7,

y = in
2 + 2m — 1,

z = m' — 2m — 1,

and h
2 = mU 4w 3 + 26m 3+ 44m + 25

= (m 3+ 2
5
2m + 5)' if m = -fo,

which gives x = 329, a = 149,

# = 191, ^ = 241,

z= 89, c=269,

as before. This method may be used for any number of

equations of the above type.

Thus for the system

a:," +#," = 2a*,

x 2 + x
3

2 = 2a
3%

x; +g
I

,«2S
,

l

* Vol. xlviii., p. 85.
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we may take for x
x

fo x
p
any p consecutive terms of the series

whose general term is (m + 2)'+l)'
i—2. The values of a

l

t° a
p_ x

will then be consecutive terms of the series whose
general term is (m + 2r)*-h 1, and it only remains to find a
value of in which will satisfy the last equation. This can
always be done.

Thus \t' p = 2n, taking for x
]

to x
2n

the terms ranging from
(wj-2h+ 1/-2 to (m + 2n-iy-2, the system will be solved if

2n(2n- l)(2n'
i -2n-l)

m = .

2n
7-2n + l

If p = 2n + 1, and if we take for x
x

to x.,
n+i

the terms ranging
from (hj - 2n -j if- 2 to (m + 2n + 1)'- 2, we get

16>/
4 - 24^-f 1

in = ;—
2(4W*+l)

, 24V-

2

Thus for the five equations

x*+ x*=2a;\

x,
3 +x;=2a;,

x
3
'±x;=2a

3

3

,

x' hx*=2a 3

,

x*+x
x
*=2a

&\

take ;r
i

= m a+10w + 23, «,= m a + 8m + 17,

x
s
=7,i

3 + Gm + 7, a
?
= ?n

s+4»i + 5,

x
a
=m*+ 2m— 1, a

3=?«*-H,

#
4
=.m'— 2m - 1, a

4
=. ?«"— 4»i | 5,

X
B
=m'— 6m + 7,

and a
6'=vi*+ 4>u

3 + 98m 2+ 188m + 289

The above equations may be written in either of the forms

ff.'-O a.'-O «/«=*,',

«/- *
8

,+ a/-.«/+ <=#,»,

<*;-a*+a;-a? + af=xfi

a/-«/+ a,'-«,
,+a,,

=a?/,

^"-^"4 a,'- 0,"+ «/=*/,
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and a* \ a/+ <- <2+ a
2= *,*+ #/+ x

3\

a
2+ a

3

8
+ a*— ffl

5

2
fa,

! = as,*+ ^
3

'2 + x 2

,

<+<+ a/- a*+ a*= x
a
'+ x?+ x

5\

a*+ a* + a,
3 - a,

s + a
g

a= x 2 + x* + ^,
3

,

<+ «i
2

»- «,*- «
3
'+ «/= »7+< + <i

so that these, and similar s}rstems containing any odd number
of equations, are satisfied by tlie solutions found above.

2. Apparently, in order to obtain a linear relation, it must
be possible to arrange the terms of an equation in two groups,

each of the same quadratic form.

The system

a
2- 2sab + OS + (/- c* — z\

V — 2sbc + tc
2 + (V— t) a

2=x\

c
2 - 2sca + ia* + (s

2-
1) W= y\

where s and t arc any given rational quantities, satisfies this

condition.

If t—1, solutions can be found which are expressed in

terms of one rational parameter; otherwise numerical solutions

can be obtained. To prove this statement write the first

equation as

(a - sh)
2- (V- t) b

2 +(s'- 1) c
2= z\

so that its linear relation is

2k(a-sb)- (k* 4 s
1 -t)b + (k*- s

2 +t)c = 0,

or 2ha - (Ji
1+ iks + *'

-

1) b + (k
l- s

2

f t)c = 0.

Similarly, for the second equation

2mb — (to" + 2ms + s*— t)c + (»«" — s
2 + t) a = 0.

Let the value of a found from these two relations be

a=p
l
k'

i + qjc -\ i\, with similar expressions for b and c. Sub-
stituting in the first relation wc have p.=p3

and r
3
= - r

8, and

a similar substitution in the third equation shews that the

coefficient of £
4

will be

Ps-toPtPi I tp'+(**-t)P,
1

=.tf-t+ l)ti-28piVx+tp?

and similarly the term independent of k will be (sr
3
— r,)

8

,
so

that suitable values of k, expressed in terms of m, may be

obtained.
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Tf t is not equal to 1, let

a= k'(p
l
m* +...+...) 1-...+...,

witli similar expressions for b and c.

The first linear relation gives p3
=p

3
, and the second shew

that p3
= p :

, and so, on substituting in the third equation, the

coefficient of k* will have, as its first term,

ml

{pl
'-2sp

l
>+tp

l
*+(s'-t)p>} = mW(s-l)>;

and so, in general, values of m may be found which make this

coefficient a square, and from this values of k may be got

which make the biquadratic expression a square.

As an example, take the system

a
2 + iab + 7b

2 -3c* = z\

b
2 + ibc + lc

l - 3a
2 = x\

c
2 + lea + 7a

2 - 3b
2 = y\

The linear relations

2ka 4 (A"+ U- - 3) b - (k
3

i 3) c =

and — 2« + i + c =

give a = lc + 2k,

b = Jc
3-k+3,

c=/,-
3+ 5/c-3,

and y*= 9 (# + 8k
3 + G/c

2- 4jfc - 2)

= 9(^+47c-5) s
if &= £.

Hence a =11, a; = 25,

6=15, y = 23,

C= 7, 2 = 47.

These values also satisfy a fourth equation

c
2 +4&c + 7^-3a 2 =.r

l
\

Or, take the system

4a
2 -4«Z>-2t 2 +3c" = ^

2

,

4t
3 _4/;c _2c2 + 3a

2=«,

)

4c*-4ca-2a'+3£ 2 = /.

The linear relations

Aha - (T+ 2jfc + 3) b + (/o
2- 3) c =

VOL. L. F
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and a + 2b-3c =

give a = k"+ 6/c+ 15,

b=kU 12/c— 3,

c=F4 10£+ 3,

and 2/

S = ^
4 + 647c

,+394/c
8- 1008/c-567

= (Ar+32/e-315)
3

if &= fi'

Hence «=G31, = 555,

6 = 745, ?/ = 1041,

c=707, s== 319.

As an example, where a more general solution may be

obtained, consider the system

4(a 2 +ab + b'')-3c' = z\

4(b 2 + bc +c2

) -Ba
2=x\

A{c2 + ca + a2)-?>b
2 = y

2
.

Writing the equations in the form

(2a + bj'+Bb'
J -3c2 = z\

we have ika + (k
2 +2k-3)b- (F + 3) c = 0,

Amb + (m3 + 2m - 3) c - (m' -+ 3) a = ;

and so

a = k
2 (m'+ 6m- 3) + 2k (m2 + 2m - 3) - 3 (m 2- 2m - 3),

b = F(m 3+ 3) - 4k (m 3 + 2m - 3) + 3 (m*+ 3),

c = /c
3 (m 3+ 3) + 27c (wi

a+ 8m + 3) - 3 (ro'-f 3),

and

^=9 [k\m 2 + 4m- l)
3
4 8k"(m* + 4m - 1) (m + l)

3

+ /c
2 (- 10m4+ 16m3+ 180m 3+ 112m - 74)

- 2k (4m
4 + 24m3- 32m 3 + $m + GO) +- (3m 3 - 4m - 3)

3

]

= 9 [k
2 (m2 + 4m - 1) + Ik (in + l)

8- (3;n
2- 4m - 3)]

2

,

4(m + l)(m-3)(m3 +3)
if " 5m4+ 8m3- 10m 2 - 8m + 21

"

Other solutions in general form may be obtained, or to obtain

a numerical solution with less labour put m= 2 in the expression

for y
3

, and we get

2/

v =9(12U' , + 792F+838F-408Z;+l)

= 9(1 U-
3- 204/0+1)* if /.- = ?•?,
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which gives « = 2899, cc = 3701,

b= 956> # = 92G2,

c = 2529, s=5401.
Again

y*=9[k*(m'+lm -l)+ 4Jc(m+ iy+ Sm'-lmSy if & = -l.

But this value of k leads to solutions which satisfy a-f S+ c = 0,

and it will be found that any values of a, b, c which satisfy

this last equation are also solutions of the system.

These simpler but partial solutions, in cases giving positive

values of a, b, c, may now be considered. They may be

obtained when t=\ or 2s.

3. The first two equations of the system

a
2 -2sab + b

2 +(s2-l) c
s= z\

V -2sbc + 6
l + (V- 1 ) cC = x\

c
2- 2sca + a+ (a

2- 1 ) b
2= y\

are satisfied by c + a — 2sb = and the third equation by

2lcc - (T+ 2/,s +s*-l)a± (/.•*- s
2+ 1) 6= 0.

The upper sign yields

a = Ic*+4:ks-s2 +l,

b = k
2+2k(s+l) + s

2 -l,

c = k
l
(2s - 1 ) + ik i" + (** - 1 ) ( 25 -t 1 ),

and the lower sign gives

a = —F+ 4A-s + s
s —

1,

b= *» + 2ft(*+l) + ^-l,

c = ifc

1
(2s + 1) + 4/b* + ( 2s - 1 ) (V - 1 ).

For positive solutions s must be positive. Again, the first

two equations of the system

a - 2sab + h
2 - <? = ( 1 - »*) z

2

,

b
2 -2sbc+c2 -a 2 ={l-s 2)x i

,

c
2 - 2sca + a - b

2 = (1 - «*) J/"

arc satisfied by c + a- sb = 0, and the third equation by

(k* + 8*-1) c- [k*8 + 2lc(a*-l) + 8(/-l)}a±(k'~8,+ l)b= Q
1
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where, again, s should be positive. The upper sign gives

a = k' + (s-iy,

b = k
2 + 2k(s-l)+s 2 -l,

c =w (s- i) + 2ks o- 1) + (5 -i) <y + 1),

and the lower sign

a = k\s-l) + (s+l)(*B -l),

b =k2
(s + 1) + 2k (/-I) + (8 + 1) (V- 1),

c = k
2 (V -t 1) + 2ks (V - 1) + (s

s - l)\

Lastly, the first two equations of the system

a - 2sab + 2sb
2 + (s

2 - 2*) 6' = z\

b
2 - 2sbc + 2sc* -t (s

s - 2s) a = x\

c
2 - 2sca + 2sa* + (s* - 2s) b* =yi

are satisfied by c + a — b = 0, and the third equation by

2kc - (It? + 2ks + s' - 2s) a ±(k* - s
2 + 2s) b = 0.

Taking the upper sign

a = k'+2k — s* + 2s,

& = F+2/l-(s+l)is8 -2s,

c=2ks+ 2(s
s — 2s),

and with the lower sign we get

a = - k* + 2k + s'
! - 2s,

b= k
2

-\ 2k(s+l) + s
2
-2s,

c = 2k* + 2ks.

4. Solutions, expressed in terms of one or two parameters,

may be obtained of the system

d'-2sab+b 2 + (s
2 -l)c2 =z 2

,

b
, -2sbc + c

, + (8
> -l)d*=f,

c
2 - 2scd + d*+ («" - 1) a = x 2

,

d 2 -2sda + di + {s
2 -\)b'2 =y 2

.

The linear relation for the second equation should be written

as

(T - 2ks -f s
2 - 1 ) b \ 2kc - (/«' - s

2 + 1 ) d= 0,
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and, on expressing the values of a, b, c, d in powers of k

according to the previous notation, we find that ft = ft. On
substituting these values of a, b, c, d in the last equation, the

coefficient of h* in the expression for y
2
will be

Vl ~ 2sP< ft + ft' + <V " 1 ) ft' = ( ft " *ft)',

and so values of Je, expressed in terms of the other two para-

meters, may be found. Thus for the system

i(d'-ab + b')-3c2 =z\

4(b°'-bc + 6
i)-3d 2 = t

2

,

4 (c
a - cd + d') - 3a = x\

4:(d'-da + a')-3b ? = y\

we may get special solutions by using the relations

-a + b-c = 0,

(&' _ 2k - 3) b + ticc - (k
1

^3) (f=0
!

-3c+ 8<2— 7a= 0.

These yield a = hF + 1 6/c - 33,

5= 4F + 32/c+ 12,

c=-F+16&+45,

rf= 4F + 20/;-12,

and y
1 = 36/c* - 144/;

3 - 2952k' - 5040/c + 2916

whilst k

= (6/,'
3 -12/j-258/2
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Had we used tlie relations

— a-\b — c = 0,

(Zf - 2k - 3) b + Ike - (k* + 3) d= 0,

3c + 5(7- 7a = 0,

we should have got

a = 4F + 5k- 3,

&=5F + 10/c + 15,

c= &*+ 5/,' + 18,

^ = 5/o
2 + 4^-15,

and if = 9 (jfe* - 1 6/o
5 - 1 1 8/c* - 1 28/c + 9)

64/c

=Hi+ 3

= 9(#
!

-8/fc-91)3
if A = - V-

The value 7c = — 2
g
n gives

a = 1451, .71 = 2397,

b = 1735, # = 1563,

C= 284, z = 3186,

^=1861, t= 51,

and from k = - 4j*

a = 3239, a= 4953,

5 = 4015, ?/ = 26G7,

c= 77G, = 7254,

d=4069, «= 2181.

5. For the system

(5 + c7 + c"-(c+rt) 3 = 2

,

(c+«) 2 + a
2 -(a+//) 2 = x2

A=— V S' ves

a = 227, a; = 309,

6=295, »/= 21,

c= G8, s=522,

rf=277, <=237.
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1

use (k
1 - 1 ) a + (2* - 2) b - (*" + 1) c= 0,

-5a + 33-f 2c =0,

which give a= 3F + Ik — 1,

5 = 3/c
3 + 7,

c = 3k
2 +10k-13,

and a;
5 = 9£

4 + 144/;
3 - 50/c* - 448/,: + 161

-(8^+ 244-aiA)- if ^=W.
Hence a = 1279, #=1601,

6=1207, y= 953,

c=1387, s=1243.

Again, fur the system

be + ca — ab = z*,

cd + db — be = t\

da + ac — cd = a;*,

ab + bd — da=y 2

,

take a + 45 — c = 0,

Fb f c-(£ + l)V/= 0,

c + 4</-9a = 0,

whence a = 2F + 2/; + 5,

5= 2/;
3 + 4*+l,

0=10/^+18/0 + 9,

d= 2k
2

+9.

with y* = ikx

h lG/o
3 + \2k

2
+ 40/j - 31

= (2tf+4A-l)' if £= §;

and so « = G5, a;= 17,

b= 41, y = 23,

2 = 147,

</ = 89, <= 121.

A solution expressed in terms of two parameters may be
obtained.
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As another example, consider the system

sab + c
s = z'\

sbc + a
8 = x',

sea + b~ =y~

\

where s is a given rational quantity,

form may be obtained; otherwise for

A solution in general

ie first two equations

4a — sb + 4c = 0,

and for the third equation

Al<?a + ikb-se = 0,

which gives a = — lG/c +s'\

b = Wk* +45,

c= 4Fs+16&.

a= 9,

ft = 328,

c = 73,

a= 3,

b = 5,

c= 2.

If positive solutions be desired, s must be positive.

It may be noticed that the systems

ab±l =z'\

bc±l=x%

ca±\=y*

may be solved by taking for a, b, c, with the upper sign

three consecutive terms of even ranks, and with the lower

sign, three consecutive terms of odd rank, of Fibonacci's

Thus, if s= l,

and for s = 4

6. Hitherto, each equation of the system has been of the

same form, but the method applies equally well when this

is not the case. Thus the system

qa* + b* — qc" = z
1

,

V + pc
1 -pa* = x\

s(s+l)ct + (s + l)a t - nW = y\
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where q, p, ??, 5 are any given rational quantities, may be
easily solved in general terms. Thus, for all rational values
of s, the last equation is satisfied by

— nb + c + a = 0,

and the second equation by

2kb + (k'-p)c+(ki+p)a= 0,

which give a = nk 2+ 2k - np,

b= 2p,

c = nk'
J
+2/c + np,

so that z*= 4 (- n'pqk'— 2npqk + p
7

)

instead of the usual biquadratic expression in k. This is

satisfied by

k =
2p(m + nq)

m*+ ri'pq
'

where m is any rational parameter, so that

a = n (m*+ rfpq)
2 + Am (ni + nq) (in — np),

b = 2(in
i +rii

pq)\

c = n (m8+ n*pq)'— Am (m + nq) (m — np).

For Hie special values m = ±n (p-q), m = — np, or m = nq,
we get in each case

a= n
2

(p + qy-8(p-q),
b = 2n (p + q)\

c= n\p + q)*+8(p-q),
which are available, unless p = q. Thus, for the system

a>+ b
2 - c

3 = z\

b
2 +2c'-2a i= x\

c
3 +3a°-36 s =/,

solutions are a= 7, a; = 15,

&= 9, y= 5,

c= 11, z — 3.

The same values of a, b, and c would satisfy more general
equations. Thus the second equation might be written
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Similarly, taking the system

a
2 + &* — c

l =z\

bl + 3c
2 - 3a" = x'\

c* + 3a'-3b'=y\

a solution is given by a = 3, 5=4, c = 5, and these values

also satisfy the system

a* + (1 - m 2

)
5* - ( 1 -O c

3 = «,",

&' + (n
2 - 1) c

2 - («" - 1) a* = x
t
\

c
2 + (3 + *p - lp

2

) a
2 - (3 + ±p - lp

2

) b
2 - y,

a
.

It* we can satisfy

1 - wi" = a
2 - 1 = 3 + 4p - 7p%

we can find a symmetrical system, of which solutions are

a = 3, 5 = 4, c = 5.

The first equation is satisfied if

t? - 27c - 1 , A" + 2/c - 1mB^rr andn=^rr'
and the second if n

s= 4 + 4p— 7p*, which requires

4(1 -a) . li + 4x-2x2

and n =^ a>* + 7 a;
2 + 7

It only remains to find rational solutions of

k
2 + 2* - 1 _ 14 + 43-20'

#+ 1 £»" + 7

If this be expressed in powers of SB, the condition for rational

roots requires that a certain biquadratic expression in k should

be a square, and by Fermat's method we find that a suitable

value of k is
5
7
°, which gives R = §&2i, and so the coefficients

in the symmetrical system may be obtained. The same result

could of course be obtained by writing the system as

a
2 +pb2 -pc2 = z

2

,

b
2 +pc* —pdi = x 1

i

c
i +pdz — pb 2 = y'i

,

and on substituting a = 3, 5 = 4, c=5 it is necessary that each

of the expressions l-p, l+p, 25 - Ip should be a square.

A suitable value of p can then be found by the triple equation

method of Fermat.
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7. The solution of the system

sa
x

a
2
+ fl

3

3 = a;,
3

,

S0 2°3 + a
* = X*>

Sa
n-x

a
n + a? = X\-V

is exceptionally simple. For if the first relation be written

as 4Fa, - s«
2
+ ika

3
= 0, it will be seen, using the previous

notation, that p, = 0. Or, writing the (n — l)
th

relation as

««„_, — 4£
2
a
n + AMa

x

= 0, we get ;>„ = 0. In either case the

coefficient of k* in sana, -f a
2

* will be p2
\ so that solutions,

expressed in terms of the (n-2) parameters, other than k,

may in general be obtained.

For the system

4ab + c
2 =x\

4bc+d° = y%
4cd + e* =z\

Ade + a = t\

iea -+ b' = n
2

,

we get small positive solutions by taking the relations

a — b + c = 0,

b- 4c + 2d=0,

c — d + e = 0,

d - h'
!

e + ha = 0,

from which a = — F + 3,

b = - 2^ - 2k + 4,

c = - #-2& + 1,

d=- Jc'-U;

e = — h — 1,

and u
a = 4/;

4 + 1 27c' - 8k' - 28/,- + 4

= (2jfe*-f 3/,- t 2)" if *«-{.
Hence a = 11, a?= G3,

& = 52, # = 108,

c = 41, 2= (J7,

d=5G, « = Gl,

e=15, M= 58.
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CIRCULAR PARTS: THE GENERAL CASE.

By W. Woolsey Johnson.

1. In a former paper* the writer expressed the hope of being

able to make a contribution to the discussion of the general

case of circular parts suggested by Napier's class in case of five

circular parts.

We consider therefore n quantities x
{

, x3
, ..., x

n
such that,

being placed for convenience at the vertices of a regular n-gon,

any two of them being given in value, the remaining n — 2

are determined. There exist therefore a relation between
the values of any triad of the n quantities, or "parts" as we
shall call them, following Napier. Furthermore the parts

are known to constitute a reversible cycle, so that the relation

between the members of any triad depends solely upon the
" collocation " of the members as they stand at the vertices

of the ?2-gon.

2. The existence of an indefinite number of sets of circular

parts is obvious geometrically. In particular it is proposed

to develop the u rules " in the unique case in which the

" rules " are linear.

Notations for the collocations.

3. The " parts " being placed, as above stated, at the

vertices of an ??-gon, and the members of a given triad

marked, the collocation to which the triad belongs may be

characterized by the number of vertices skipped between the

nearest pairs constituting the triad. The total number of

skipped vertices is n — 3. Calling the collocation, to which

the triad &,#
a
#

3
belongs, the "primary" one, it is characterized

by the "skip numbers" 0, 0, and n — 3. Let us write this

(0, 0, n — 3) [or, when it is not desired to put n in evidence,

(0, 0). Thus for Napier's adjacent parts the symbol is (0, 0)

and for his opposite parts (0, 1)].

* Messenger of Mathematics, vol. xlviii. (1919), pp. 145—153.
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It will be observed that for any value of n these collocation

symbols are simply the partitions of n — 3 (the number of

skipped vertices) into 3 parts, admitting zeroes and repetitious.

Thus, for n = 5, we have . °> 2
)1

, 1, 1)1
'

For n = 6, For n

(0, 0, 4)>

(0, 1, 3)

(0, 2, 2)

(1, 1, 2)j

(0, 0, 6)
\

(0, 1, 5)

(0, 2, 4)

(0, 3, 3)

(1, 1, 4)

(1, 2, 3)

(2, 2, 2)

The number of collocations appears to be n -3 until we reach

greater than n — 3.

For n = 8, For n = 9,

n = 9, but then and thereafter

4. Little interest would attach to cases in which n is

a composite number, although what remains to be said would
apply to this case as well as when n is prime. The collocation

first written, in each case, is the "primary" one. Let us

suppose that for a given case the "rule" for the primary
collocation, that of "adjacent parts", is known. Then the

"rule" for any other collocation may be found by elimination

in a manner which will be illustrated below in a unique case

of circular parts, which will be now described.

The linear case of circular parts.

5. Sets of circular parts, in which the "rules" are in

algebraic form, are readily derived. For example, from
Napier's parts, say a, /?, 7, 8, e, we may derive by using
the function cos

2
(thus: a, = cos* a, a?

3
= cos'

J

#, ..., cr^cos^e)
a set of circular parts of which the rules are: For opposite

parts

*. = 1 -*v», .-(I);

for adjacent parts .(2).
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This means that the ten equations (five of eacli type) are

such that two of the five oj's may be assumed at random,
say x

x
and ;r

2
, and then the remaining three #

3 , a>
4 , and X

&
can

be so determined as to satisfy all ten of the equations.

Since the second relation is readily derived from the first

the question arises whether any equation can be assumed as

the relation of adjacent parts. The writer is of the opinion
that this is not so, but that some criterion exists, beyond his

powers to discover, that would determine this question from
a purely algebraic point of view.

0. This led the writer to wonder whether a set of five

circular parts existed in which the rules for adjacent parts

(and hence, as will be seen, all the rules for the other

collocations) are linear algebraic relations.

It may be remarked, as a purely personal matter, that

his mode of approach to this question was to assume as the
" primary " rule

X
x
+ J.r

2
4 X

3
= Jc

(the coefficients of x
t

and x
3
must obviously be the same).

On testing the five equations of this type, in which x
x
and

a?
2
(for example) are assumed at random, they gave the same

values to x
3 , ai

4 , and x
5 ,

provided only that b satisfied the

equation

bU b = (3).

Denoting the roots of this equation by w and w a set of

circular parts exists of which the relation between adjacent

parts is

x
x
+ ivx

2
+ x

3
= k (4).

From this the relation between opposite parts is found to be

.r
4
- w (x

x
+ xj = (1 - w) k (5).

We have not however two cases of sets of circular parts

corresponding to the two roots of equation (3), for if we use

w in equation (4), and then transform by taking the order of

parts x,^x
4
x

l
x

3
x

s
(which converts the collocation "adjacent

parts" into "opposite parts"), we have

w'x
4
+ x

t
+ x

2
= k

;

but, since wio =— 1, this is equation (5) with only a different

value of k. Thus the two roots of equation (3) correspond to

the two "rules", and not to two cases of circular parts.

Geometric interpretation.

7. The geometric interpretation of this set of circular

parts was not far to seek. In fact it consists simply of the
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perpendiculars upon the five sides of a pentagon from any
point of the plane. As required by the definition of circular

parts two of the parts are arbitrary; cyclic interchanges can
take place; and the relations between the members of a triad

depend only upon the collocation of the three parts.

Relations betiveen the fierpendiculars from a point of the plane
upon the sides of an n-gon.

8. It is obvious that we may now generalize from 5 to

any integer >/, and after obtaining the relation between three

consecutive perpendiculars from a point of the plane on the

sides of an ??-gon, obtain by elimination the relation between
any triad of the perpendiculars.

Let x
t
, x

3 , x3
be the perpendiculars from any point P of

its plane upon the three consecutive sides AB, BC, CD of

an ?i-gon. Denote by 6 the angle between consecutive per-

2tt
pendiculars so that =— ; and let a denote the side of the

ii
n-gon.

B * R C
Project x

7
upon a?, and xv and denote by z the distance

BR. We have then

X
x

= 17 8111 + £
3
COS#,

X
3
= (a — z) sin 6 + or

2
cos 0.

Adding to eliminate z

x
x
+ x

3
= a sin 6 + 2 cos 6 . x

%

the relation required.

To simplify the notation, let us now put a sin 6 = k and
2cos0 = c. Then the primary relation between the circular

parts is

X
l
+ x

3
— cr.

z
= k (0, 0).
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Tliis is for the collocation (0, 0) or, when n is put in evidence,

(0, 0, n-3).
When ?i = 5, the comparison with Art. 6 shows that c

satisfies the equation c
2 — c=0. The process in the latter

part of Art. 6 is equivalent to using the crossed pentagon and

obtains the formula for the collocation (0, 1, 1).

9. In the general case, the "rules" for the other collo-

cations may easily be obtained by elimination from two

"rules" already found. For this purpose four parts are

selected, two being common to two triads whose collocation

rules are known. It follows that the collocations must have

a common gap symbol, the parts having this gap being for

convenience the middle ones of the four, one of which is to be

eliminated. The gap symbol of the result will evidently

consist of the remaining gap symbols—one increased by

unity.

Thus from two cases of the rule for (0, 0), as applied

to the triads xjc
3
x

3
and X

a
x
3
x

4
we obtain by eliminating x

3

cx
x
+ (1 - c

2

) X3
+ x= (1 + o) k (0, 1),

which is the rule for the collocation (0, 1).

Again from the triads x
x
x
a
x

a
and x

t
x

3
x

5i
cases of the rules

already obtained, we obtain

(l-c')x-{2c-c').r
i
'-x

5
= -c{l + c)L..{0, 2),

the rule for the collocation (0, 2).

Elimination of x
2
from the same formulas as those used in

finding the rule for (0, 2) gives

x
l
+ (2-c-')x

3
+ r=(2 + c)k (1,1),

the rule for the collocation (1, 1).

In like manner the writer found the formulas for the collo-

cations (0, 3) from the triads k
x
xjb

%
and x

a
x

a
x

6 ,
eliminating x

3
.

The result was

(2c-cJ
)a;

I
+ (l-3c3 + c

4
)a;

J
-ie

6
= (c-c, -c3

)/c...(0, 3).

ally the writer found from the triads x
t

x
a
x

4
and Xfcjr,, f

ch the rules had already been found, the result

(1 - c
2

) x
x
+ (1 - 3c

a + c
4

) X - cx
6
= (1 - 26' - c

3

) h. . .(1, 2).
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FACTORIZATION OF N, TREATED AS A
BICOMPOSITE, SPECIAL REGARD BEING PAID
TO THE SUM OF ITS DIGITS AND TO THE
CONSEQUENT POSSIBLE SUxMS OF THE DIGITS
OF ITS TWIN FACTORS, AFTER CASTING

OUT THE NINES.

By D. Biddle, M.R.C.S.
[Formerly Statistician of the General Medical Council, and Mathematical

Editor of The Educational Times.]

I PROPOSE here to develop the method foreshadowed in

the first of my papers published in The Messenger of Mathe-

matics, vol. xxviii., pp. 125-131, 148, 149, 192, namely, that

which utilizes the sum of the digits of N. This method at

once enables us to place N in a definite class, one of six,

according to d, the single digit remaining when the nines

are cast out. In three of the classes d is odd, and in these

N=18z + d. \n the other three d is even, and in these

N=9z' + d. In each class there are 3 or 4 cases, differentiated

by definite characteristics. In all, there are 21 cases, and if

N be a true bicomposite, that is to say, the product of two
primes only, its representative, z or z', will appear once only,

unless the case, as sometimes happens, can be symmetrically

divided by one of its diagonals.*

The sixteen commencing representatives for each of the

21 cases will next be exhibited, and, as indicated, the field of

each can easily be enlarged, horizontally and vertically, to

any required extent, not that this is needed.

Class I. iV=18s + l = 6u + 1.

Case 1. N=( 5 + 18>-) (11 + 18il/).

Case II. iV=( 7 + 18r)(13 + 18il/).

Case III. JV=(17 + 18r)(17+18if).

Case IV. iV=( l + 18>-)( 1 + 18M).

* It will be observed, however, that more than one N can be represented by the
same z or z' in a different class. Thus, we have 33 representing 596 in Class f.,

Case iii., twice over, owing to symmetry
;
again in Class II., Case i., as representing

A' = 299; again in Class III., Case iii., twice over, owing to symmetry, repre-
senting 301 ; also in Class VI., Case ii., as representing 305.

VOL. L. G
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Class III. N= 9z' + 4 = 6n+ 1.

Case I, N={ll + 18r){ll + l8M).

Case II. N=( 5 + 18?-)(17 + 18Jf).

Case ill. xV=( 7 + 18r)( 7 + 18il/).

Case IV. N={ 1 + 18;-) (13 + 18il/).
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Case I IT.

A
s
=5, #,= 19, C = 5.

&c. &e. &c. &e. &c.

20 93 166 239 &c.

15 70 125 180 &c.

10 47 84 121 &c.

5 24 43 62 &e.

Class V. N= 18a + 7 = 6n+l.

Case I. iV= (17 f 18r) (11 + 18M).

Case IT. N={13 + lSr){l3 + 18M).

Case 111. iV=( 5 + 18r)( 5-} 18M).

Case IV. N=*[ l + 18r)( 7 + 18M).
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The equations for z are as follows:

s=BM+A + (C+36M)r=Gr +A+ {B+BQr)M (4),

iN=(B+S6r)(C+5&M) = BC+3&BM-\ 36Cr+1296il/i-..(5),

= {[*''-(Cr+Aj\lM\\\z'-{BM+A)]lr} (6).

By (2), z = BM+(BO-d)/18 + (C+18M)r (7).

Therefore, by (l), {BC-d)jl8=A, for Classes I., IV., V..(8).

By (5), z'=BM+{BC-4d)l3(y + (a+^iM)r (9).

Therefore, by (4), [BC-id) /36=J, for Classes I I.,III.,VI. (10).

Again, z -A = (/i+ 18r) M+ Or, therefore

M=(z-A-Cr)l{B+18r) (11),

and z'-A = {B + 36 r) M+Cr, therefore

M={z'-A-Cr)l{B+3&r) (12).

Also, by {U),r = {z-A-BM)I{C+18M) (13),

and, by (12), r= {z'-A- BM)j{G+ 36.1/) (14).

Marshalling the facts as to N treated by this method, the

inception of which took place in the Messenger, vol.xxviii., 1898,

we have the class to which N belongs absolutely given by d, and
none of the six classes has more than four distinct cases. We
begin with a knowledge of z or z also, and, if the field of

these cases were sufficiently extended, we should be able

actually to see z or z in its own exclusive and indisputable

position. Moreover, we know A, B, and C for each case.

But when the field is not sufficiently extended to present z

or z to our visual organs, M and r must be determined mathe-
matically. These, however, are interdependent, one being
discovered the other readily follows. Now, M and r may be

equal, except in those "cases" which are symmetrical about
the diagonal (N not being a square). But, as a rule, it is

advisable to seek first that one of the two which is connected
with the larger common difference, whether B or C. Jt will

be found in both numerator and denominator of the value

assigned to its fellow, M or r. The process consists in trans-

forming the apparent fraction into an integer, and M and r

reveal themselves consentaneously. Thus (11) or (12) should

be used when G> B, but (13) or (14) when B> 0.

From the foregoing equations other useful ones can be

produced. For instance,

Mr={z-A-{BM+Cr)\ll8 (15),

or Mr={z'-A-{BM+Cr)}fSS (16).
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From these we can easily find the residues of B3I+ Gr (mod 18)

or (mod 36) respectively.

By (2), (3), we have the following

l:M=B+18r:z-A-Cr (17),

. lir=C+18Mis-A-BM (18),

where B+18r = x or y, and G+ lSM= y or x, factors of iV.

It is easy, therefore, to see that M : r is approximately

that of one factor of N to the other, although BM and Gr are

rarely equal. If they were equal we should have G:B=M:r
1

which is not the case (as a rule). The said ratio, however,

may help to limit the possihle values of M and r. But 18 Mr
is by far the larger constituent of each of the quantities to the

right of (17) and (18).

By (1) and (4) we have for different classes

\8Mr =z-A-BM- Gr (19),

and 36Mr = z'-A-BM-Cr (20).

In these equations A, B, G are, for each of the 21 " cases ",

known, besides 18 and z or 36 and z . Dividing each equation

by 18 or 36, there must be a speedy limit to the additions of

18 to the remainder left by (z-^')/18, or of 36 to that left

by (z'— A)j3Q, before we arrive at BM+ Gr in the "case"
to which the particular z or z belongs. Taking a six-figured

iV= 150809, 2 = 8378, d=5, belonging to Class IV., the proper

"case" being iii. Here A = 5, Z?=19, (7=5, and

(*-^)/l8 = 465,

with remainder = 3; also 23 additions of 18 are needed to

amount to 19M+5r = 417 = 19.13 + 5.34.

Let $ = the quotient, and £= the remainder on division of

z — A by 18. Also let » = the number of additions of 18 to t

in order to arrive at BM+ Gr. Then we have

z-A = 18Q + t (21),

t+18u =BM+ Gr [22),

Q-u = Mr (23).

By (22), (23),

M={t+l8u±[{t+l8u) 2

-4BC{Q-it)y\l2B...{21).

Also, let Q' = the quotient, and t' = the remainder on division
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ofz'-A by 36, and let it'= the number of additions of 36 lot

in order to arrive at BM + Cr. Then we have

z'-A = 36 Q'+t' (25),

t'+36u'=BM+ Cr ....(26),

Q'— u'= Mr (27).

By (26), (27),

M = \t'+ 36 it' ±[{t' + 36m')
2 - *BC (Q'- u ')]*}

I
2B... (28).

On the right of (24) and (28), u and u are the only un-

knowns. Moreover, the fact that each quantity under the

radical sign is divided into two portions by the minus sign

enables us to set a lower limit to the value of u or u.
Thus, in (24),

[t -f 18m) 2

+ iBCu -4BGQ = D (29),

and, in (28), {t' + 36m')
3 + iBCa - ±BCQ' = D (30).

On the left of each the sum of the two first terms must
exceed the third, which is entirely known. Applying (29) to

the above instance, N= 150809 shows that u> 22, and 23 is

the correct value.

As an instance of the second kind, let A7^ 11771,

N= 9.1307 + 8 belonging to Class VI., Case II. Here A = 3,

5=10, (7=14, z =1307, #' = 36, t' = 8. And (30) becomes
1296m'

2

-f 1136m' — 20096= D. This, on reduction, yields

81m'"+71m'- 1256 = D, which gives ?t' = 4, and

Mr = Q' - u = 32, M= 4, r = 8, BM+ Cr = 152.

Hence N= 149.79 = (5 + 18r) (7 -f 18lf),

and z is placed in a row, of which the common difference is

298, and in a column whose common difference is 158.

A slight expansion of Case II. of Class VI. exhibits z of

this example in position :

115 413 711 1009 1307

101 1149

87 991

73 833

59 675

45 163 281 399 517

31 113 195 277 359

17 63 109 155 201

3 13 23 33 43
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It now belioves us to discover which "case" of its class

* or z belongs to, without having befoggedly to test each in
turn. We seem to have almost, if not quite, enough facts
to go upon, and the process should be brief. Great care,
however, must be taken to avoid errors. The rules are few.

(1) Put the values of z, A v B{
, G

l
side by side.

(2) Find Q l
and t

}
on division of z - A

l
by 18 (or 36

for z).

(3) Next utilize (29) or (30) for finding the lower limit of u.

(4) Then, by (24) or (28), proceed to discover whether the
quantity under the radical sign be a perfect square. One or
two trials generally succeed taken above the lower limit found
by Rule (3).

(5) If two trials fail, proceed with A
2

, Bv C
t , and so on

through all the cases of the particular class.

N.B.— It will be observed that when iV'is of form Gn + 1,

it belongs to a class having 4 cases, but when it is of form
6n — 1 its class has only 3 cases.

If two trials fail in every case, make a third trial with
A 2?

l5 (7,, and so on. There is no goal to be reached until
the aforesaid perfect square be found.

(6) But when it is found, utilize the fact that its root equals
BM ~ Cr, whilst the first term under the radical sign in (24)
or (28) indicates (ISM + Cr)\ The second term under the
radical sign, being iBCMr, is the difference betweeirthe two
squares.

Let JV= 6049 = 18.336 + 1, belonging to Class I., A
t
= 3,

#, = 11, O =5, z -.4, = 333 = 18.18 + 9. Therefore #, = 18,

*, = 9. The formula (29) determines ?«, > 2. Testing 3 it

fails in (24), but 4 succeeds, for t
t
+ 18u

i

= 81, and

4BG ((?,-»,) = 220 (18 -4),

and 81* - 220.1 4 = 59*. Therefore

B
x

M+ C
x
r = 81, B

l
M- C

x
r =59.

8l-59 = 2#,il/, whence Jfsi.

81 + 59 = 140 = 2 C
t

r, whence r=14.

£ = 5 + 18J/=23; y=ll + 18r = 263.

But we will not leave the subject without investigating the
relations to Case I. of the other cases in the same class. Here
therefore I append a conspectus showing tor the several
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positions (16 in number), exhibited as belonging to the several

cases, the additions to, or deductions from, z or z in Case J.

in order to arrive at the similar quantities in the succeeding
cases of the same class.

Class I. Relation to Case I.

of Case II. of Case III. of Case IV.
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Class VI. Relation to Case I.

of Case II. of Case III.

-48-60-72-84 +56 68 80 92

-36 -48 -60 -72 44 56 68 80

-24 -36 -48 -60 32 44 56 68

- 12 -24 -36 -48 20 32 44 56

The first thing to notice here is, that not only in each row,

but in every row of a particular " case " (as related to Case I.)

a common difference is exhibited, and also in every column,
though not necessarily the difference of the rows.

On examination of the former table of classes and of the

factors of N formulated at the head of each, we find that the

present common differences equal those between B, C in

Case I. and B, C of the particular case under examination.

If only we could arrive at the case, as easily as we arrive

at the class, to which AT belongs, the present method might
almost claim to be a direct method of factorization. And I

am sure that the time will come when this will be effected.

in conclusion, however, there is another point to notice,

for we have

z or z = A + BM (mod C+ 18 or 36Jf) (31)

= A + Cr (mod B + 18 or BQr) (32).

Considering z alone now, we thus obtain

N=18z \-d = \%A + d + 18Z?il/(mod C + 18ilf)...(33)

= BC+18BM{mod C+18M) (34)

= B(C+ 18JI/)(mod C+ \8M) (35),

and, by (32) also, =0 (mod G+ISM) .... (36)

= (modi? +18/-) (37).

This proves that z lies on a row whose common difference is

one factor of N, and in a column whose common difference is

the other factor of N. In the case of z the common differences

are respectively twice the factors of N. But (35) gives us

more than this, for it tells us that

18{A + BM) + d= B{C+18M) (38),
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and 18(4+ Cr)+d= C (B + 18r) (39),

therefore M + A\B\ r + AjC= C+ IBM: B+ I8r....(40),

which approximately gives the relation of M and r to the

factors of N.
We will now take some notice of the constitution or

structure of the said cases.

Those belonging to the z classes, II., III., VI., consist

entirely of odd numbers. But those belonging to the z classes,

I., IV., V., have both odd and even numbers in equal pro-

portions. The arrangement of these latter is definite. The
diagonal line of numbers, which rises from A, consists entirely

of such as are of like character with A (odd or even).

Running parallel to this diagonal and on both sides of it are

lines of the opposite character, and beyond this other parallel

lines similarly alternating in character, " so far as the field

extends, and there is no limit. The whole series of lines thus

described is crossed by another set of parallels of alternating

character (odd or even), but not of such uniformly increasing

value throughout their length. In fact, after crossing the

aforesaid diagonal from below, the value of the numbers ill

these lines begins to diminish.

Another fact to be taken note of, in regard to z cases, is

that we can view them as consisting of intermingled rliombi,

the four vertices of which are numbers of one character (odd

or even) enclosing a central number of the opposite character.

The differences of the numbers forming opposite sides of such

a rhombus are identical, and this difference may extend to any
number of rliombi in succession having common sides.

Examining Class I. as an example of tlie z classes, and
taking first the diagonals of the four cases, we find a definite

distinction between them. Rising from A, the first link in

the chain = {B-\- C 4 18) always. In the four cases of Class I.

the values are 34, 38, 52, 56 respectively. Each successive

link is 36 beyond its predecessor. Tims, taking Case I.,

34 + 36 = 70, 70 + 36 = 106, etc. The " links " are the differ-

ences between the successive numbers forming the diagonal.

The parallels directly over the aforesaid links are found by
adding 18 instead of 36. Consequently we get 34, 52, 70 as

differences between numbers in the two first columns, 52, 70,

88 in the next, and so on, the differences being between
numbers which are parallel to the diagontl or coincident

with it.

If we ascend vertically from 3 <- 34 -> 37 through
8«-52->60, and lastly through 63<-250->313, we come
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to 68<-268->336, where 336 is the z for N=60i9, which

we factorized a short time since. If we ascend in the

diagonal, we come to 250, the difference below 268 in the

vertical ascent. The absence of 268 from the diagonal is

due to the latter proceeding by leaps of 36, whilst the vertical

proceeds by leaps of 18. The diagonal contains all the

alternate differences of the vertical. These equal differences

can be linked together by rhombi as shown above, and all

these intervening rhombi would exhibit identical differences

between the numbers on their coinciding sides.

Proceeding by the formulas (31), (32) by deducting the

number (A + BM) or (A + Cr) from z, and dividing by the

common difference of the particular column or row, we soon

find whether z belongs to that case or not*. In regard to

3 = 336, we find, in Case I., that 14 is at the foot of the first

column beyond A, and the common difference is 23, which
proves successful, being one of the factors of N. We also

-find r = 14, M= 1.

It may further be noted that Q, which is the quotient on
division of z — A by 18, may be either odd or even. But t,

the remainder, depends on the characters of z and A. When
both these are odd, or both even, t will be even; but when
they differ, t will be odd.

Moreover, when z and A are of similar character, il/and r

are of similar character also, though not necessarily the same
as z and A. But when z and A are of opposite character, so

likewise are M and r.

BM+ Cr is odd or even with t.

In regard to the classes devoted to z\ namely, II., III., VI.,

although every number in each of the cases is odd, there is

considerable similarity as to the relations they bear to each
other. It is true they are virtually twice as big in proportion

to the size of JVas compared with the z numbers. Moreover,
the ascent of differences in the diagonal is by leaps of 72, and
of the parallels taken vertically (as before) by leaps of 36.

* The best plan will be to fill in ilie diagonal, as explained already (in the last

paragraph hut one) from A until the value of z or z' is just overpassed. We shall

then have, for Case i., Ac, a member of each of n rows, and also of n columns.
The foot values of these, and the left-hand values of the rows, can at once be
placed ; so that 2>* trials, carried out according to the instructions, will suffice for

any one case, and, when z or z' is found, the factors of N are at once known. It
will easily be seen that z or z' cannot lie in any row or column beyond those
mentioned. It is further obvious that, in the six, out of twenty-one, cases which
are symmetrical about the diagonal, there is no need to examine the n columns as
well as the n rows. The possible necessity for In trials applies, therefore, to only
fifteen of the cases. This makes the maximum number of trials required, for V
of a given size, about the same m all classes. Moreover, roughly, «'-'=.Mr, so that
n varies much as ^N in its particular class.
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Again, there are rliombi noticeable in these cases as well as in

those of z, having the same differences on opposite sides, but
the central z no longer differing in character. Nevertheless,

the rhonibi intermingle in a precisely similar manner.
Since z stands in a row and a column, the common differ-

ences of which are the two factors of N, and since the foot of

the column is A + BM, whilst the beginning of the row is

A + Or, the following congruences can only be true when
A, B, C belong to the same case as z. See (1).

(z-A-BM)(z-A-Cr) = (modiV) (41),

(z-AY-(z-A){BM+ Or) + BC.Mr = (mod N) (42),

{18Q + t)'-{18Q + t)(18u + t) + BC(Q-u) = (modiV)..(43),

(18 + t) {18 (Q- u)} + BO {Q-u) = (mod N) = N.Mr..,(U).

By reference to (20), and the remarks below it, also to

(25), (26), (27), and again to (4) and (5), we have, for the cases

in which z figures, the following

{z'-A-BM){z'-A-Cr) = (mod4iY) (45),

(z'-Af- {z'-A) {BM+ Or) + BC.Mr = (mod 4.2V) (46),

(36 Q'+t'y-(SQ@+t')(3Su'+t')+BC[ Q'-u') = (mod 4JV). . . (47),

(36 Q'i t') {36( Q'-u')\+BC( Q'-u) = (mod42V)=4iO/r...(48).

When N"\s large considerable aid can be derived from the

use of the following formulas

{BM+Cr-t)jl8 = u, with Q — u — Mr,

or (BM+Cr-t')l36=u', with Q'-u' = Mr.

Let us try Professor Jevons' 10-figured number in this

way, N= 8616460799. Here d=2, so that N belongs to

Class II. It also belongs, as we shall see, to Case i.

z' = 957384533, 4 = 7, #=26, (7=10, Q' = 26594014, t' = 22.

In this Case i., B+ 0= 36. The lower limit of u', namely,

a' — v = 4619, and we can take M
x

= r, = u — v , as follows

(26.4619 + 10.4G1 9 - 22)/36 = u - v'.

We can eliminate the small fraction by observing that

10.13 — 22 = 3.36. Consequently we obtain as possible

(26.4619 + 10.4632)/36 = 4G22.

But 4619.4632 <Q'- 4622.
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Now 10.18 = 5.36 here if we need small additions for

adjustment. But first let us add k to both M
x

and (>-, + 13)

and also to (u -v' + 3) until Q - u is nearly reached.

(4619 + *) (4632 + k + 18p) = Q'- (4622 + k+ 5p),

k
2 + (9252 + 18p) k = 26594014 - (4622 + bp)

-(4619.4632) -18.4619^,

k+9 (514 +p) = (26594060 + 121p + 81p
2
)*.

Taking p=19, k + 4797 = (26625600)* = 5160,

&= 363, and 4619 + 363 = 4982=1/,

whilst 4632 + 363 + 342 = 5337 = ?-,

N= (18.4982 + 5)(18.5337 + 13) = 89681.96079.

A DIFFERENTIAL EQUATION OCCURRING IN
THE THEORY OF THE PROPAGATION

OF WAVES.
By Dr. If. Bateman.

§ 1. The mathematical theory of the propagation of waves
in a non-dispersive medium has been discussed in a general
manner by E. Vessiot*, whose results may be used in Einstein's

theory of gravitation and in other theories in which the form
of an elementary wave issuing from a point (x, y, z) at time t

is determined initially by an equation of type

3 3

S 2 9mn (
X

0, ®» X
21
x

3)
dxJx

n = ° (!)>

wherein cr = t, x
x

= x, x
3
= y, x

3
= z.

In Einstein's theory of gravitation the equations for the

propagation of electromagnetic waves may be written in the

form

rotH= - ?5 divD =
c at

rotE =-- V» divB =
c at

(2),

* Bull, de la Soe. Mathematiqw, t. 34 (1906), p. 230; Annates de VEcole normale
(3), t. 26 (1909), p. 405; Comptes liendus, t. 166 (1918), p. 349.
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where the vectors H, D, E and B are connected by relations

which are linear in their components, and are just sufficient

to determine the vectors E and B uniquely when H and D
are given. These linear relations are similar to the relations

connecting the co-ordinates of two lines which are reciprocal

polars with respect to the quadric (1) when dxr dxv dx3 , dx3
are

treated as homogeneous co-ordinates and the quantities gm
coefficients. The relations are in fact identical, with tl

proposed by the present author* as a scheme which can be

combined with (2) so as to give a type of wave propagation

which can be described by means of equation (l).

The partial differential equation of the characteristics of

the field equations (2) and our scheme of linear relations is

3 3 dO dO
Q(0,e)= S S g^ (,; , x

{
, xv v3 ) dV ^- = ...(3),

m=0n=0 ° m ajCn

where the quantities #nm , g
{mn)

are connected by the relations

8

= 1 m — s,

In Einstein's theory the functions gmn (x , xv x
2

, x
3)

are not

arbitrary, but are solutions of certain gravitational equations.

We may still, however, regard equation (3) as the partial

differential equation of the characteristics, and so we shall not

concern ourselves directly with the gravitational equations.

Our object is to study the equation (3) when the coefficients

g
(mn)

are unrestricted, and to determine some cases in which

this equation possesses a solution of type

*-/(«,£) W.

where / is an arbitrary function of two parameters a and /3,

which are functions of x , xv x
s ,
and a?

8
.

§ 2. It is easy to see that solutions of type (4) exist when

the three partial differential equations

12 (a, a) = 0, fl(a, /S)= 0, fl'(/8, /S) = (5)

are compatible. Let us write 12 (a, a) in the form

3 9a
J* , 9a •

7
9a * 9a

n=0 dxn m=0 ^m n=0 0*» m=0 °Xm

* Proc. London Math. Soc. (2), t. 8 (1910), p. 223.
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(hen the equations (5) can be satisfied if the four equations

(a - \l) *— =
\ H n ^

•(6),

3 3/3

2 (a
n -XOg- =

n=0

3

S {Xh,

m=0
PJ ?'''„

= o

(7)

can be satisfied, X. being a quantity which is determined by
one of these equations. Now these four equations are com-
patible if the first two equations form a complete system, and
.the condition for this is that the equation

_8_ Hat
-k-^J W- 3pJ »

C).-

.(8)

should be a linear combination of the two equations (G).

Writing down the conditions which must be satisfied, we
obtain two partial differential equations of the first order for A,,

and the elimination of A, from these equations will furnish u.s

with the condition which must be satisfied by the coefficients

an , bm , ln, pm in order that the partial differential equation

11(0, 6) = may possess solutions of the desired type.

§ 3. The analysis in the general case is very complex, and
so we shall confine our attention to a simple case which leads

to a result of some interest.

Let the equation 12 (6>, 6) = be

dx dy

de dj>

(9),

where v is some function of rv, y, z and /", whose form is to be
ascertained. The equations which must form a complete
system are now

da „ da da da
i

X ^. = v ^ (»»).
d% de ty

VOL. L.
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and the two partial differential equations for X are

c)X

dt

dX dp _ . dp

dy ' dx dz
•(11),

where p = - . Substituting in the second equation the value

of p given by the first, we obtain an equation which may be
written in the form

dX d

dy dt
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Particular values of v may be obtained by starting with well-

known equations g^= xp ({/,), which are of Lagrange's type*.

Thus if we start with the equation

dx T
L \dx

in which z-2x-^ = c
l

and x(~)=c
2
arc both first integrals

of the differential equation

„ d'z dz

ete dx

we obtain the equation

x\ i = y[z + 2x\] + t

as an equation defining a possible value of X. This gives

v = \ z + 2xy±2x^(^^+y^=\p Szy.

Since /*/? = 1, the equations (10) and (11) indicate that

*=G{p,y,t).

Also it is easy to verify that in the present case

dp _ dp

dy~ P
dt>

3a _ den

dy~ p
dt'

BG dG
dy

hence since

"df
we must have

and this indicates that

a = * [py + 1, p],

where * is an arbitrary function. This is the solution of the
desired type.

It may be inferred from the last example that the solution
of the desired type is #=/(a, /3), where a=g

i

(x,*z, \),
ft =#2 i

x
i
z

i ^)» and * ' s defined in terms of .r, y, is and t by
an equation of type (17). To verify that this is the case we
have to prove that a satisfies the differential equations (10}
and (11).

* V '

* Boole's Differential Equations, p. 131.
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a- 3A. 3A. . . ., , ., , . . 3a 3a
bince — = j»7r-, it is evident that the equation — = u —

dt
r
dy l

dt
r
dy

is satisfied. We also have

?a
_ X. — = ^' - A,

—
' + ^ (~ - X —

3# 3<s 3x 3<s 3a. \d-ii dz

Now, since g x

[or, z, A) = c, is a first integral of (15),

3/7,3/7, 3* §?, ^A. _
3# 3s; dx 3A, offlj

must be identical with the differential equation (15) when X

* i ,
dz . - 3a 3a T .

is put equal to —— , and so we inter that = X — = 0. It
ctt; d^ d«

should he noticed that equation (17) gives

i 3A/3.y , ..^ =
3M37

=^'^)=a
'

py +-' = <7,0«, », ^)=/3,

v = Xp = \<7
I
(«, 2;, A).

§ 4. The problem of finding solutions of the characteristic

equation of type (4) is of some interest because when such

solutions exist the partial differential equations (2) possess

solutions of type

H = ll/(a,/S), D = d/(a, /3),

E=e/(a, 0), B=b/(a, /S),

where the vectors h, d, e and b are independent of the form

of the arbitrary fund ion /. When these expressions are

substituted in the partial differential equations, relations are

obtained which enable h, d, e and b to be expressed in terms

of the derivatives of a and (3, provided a and /3 satisfy the

partial differential equations (5).

These equations cannot be satisfied simultaneously in all

cases; for instance, when the equation (1) is of the type

(!
_ *J?) tf - (i _

2^)~W - rW - ? MBd?

used in Einstein's theory of the gravitational field of a single

centre of force, it seems that functions of type a and ft do not
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exist when m is a constant greater than zero, while, when m
is zero, it is well known that they do exist.

In the latter case it is possible for entities of finite size to
be propagated along the (rectilinear) rays without any loss of
individuality. The non-existence of the functions a and fi
when m> may mean that there is a fundamental difference
between the propagation of light in a gravitational field and
propagation in free space.

SUMMATION OF ^-HYPERGEOMETRIC SERIES.

By Rev. F. H. Jackson, M.A., D Sc.

Introduction

.

AMONG summable cases of ^-hypergeomelric series usually

termed Heinean series, from the fact that Heine (Kugel-
fnnctionen, vol. i.) first discussed a ^-series 0(a, b, c, q, x)
analogous to the ordinary hypergeometric series with three

elements F(a, b ; c, x), the following series may be of interest.

We call the series summable, when it is capable of expression

by a finite number of Gamma-functions. In this paper the

fundamental series under discussion is a special case of a
5-hypergeometric series with thirteen elements. From this

series and equivalent ^-product many interesting results in

elliptic 3- functions can be deduced, the nature of which is

stated below. It is well known that F(a, b] c, 1), sym-
metrical in two elements a, b, can be expressed as

r(c-a-b)r(c)
r{c-a)r(c-o)'

with an analogous form for ^-series in terms of the Basic
Gamma-function.* The question arises, are similar sum-
mations by Gamma or ^-Gamma functions possible for series

symmetrical in 3, 4, 5 or higher number of elements? In
the appendix to this paper this question is discussed, and the

conclusion is reached that such summations are only possible

* Proe. R. 8.
7
vol. hxvi. A.

H2
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for series symmetrical in two elements and for series sym-
metrical in three elements, but that such theorems do not

exist for 4 or 5 or higher number of elements. It is remark-
able that for symmetry in three elements' the series is a case

of hypergeometric series with nine elements. Many special

cases of summation of hypergeometric series have been
considered by various writers, to which 1 give reference here.

F. Morley, Proc. London Math. Soe., vol. xxxiv.
A. C. Dixon, Proc London Math. Son., vol. xxxv.
Saalsclnitz, Zeitschrift fur Math., vol. xxxv.
Dongall, Proc. E<lin. Math. Soc, vol. xxxv.
Watson, Camb. Phil. Trans. (.1910).

Rogers, Proc. London Math. Soe, vol. xxxvi.
Jackson, Messenger of Math. (1910), p. 151.

„ Proc. Lond Math. Soc, ser. 2, vol. ii
, p. 219.

,, Amer. Journ. Math., vol. xxxii., 307.

„ Proc. U.S., vol. Ixxvi., A.

The principal product and equivalent series discussed in

this paper may be expressed as follows

[y + z + c + 1 ] n j> + z + c + 1 ]„ Q + ,?/ + c + 1]„ [c + 1],

[x + c + 1
j u [y + c + lj

n [
z + c + 1]„ [x + y + z + c + l]„

x
[- gM-.vU- zl[-"l

m

[>4y4S + 2c + M + l],

[astc+lJ
l
.[y+c+lJr

[«+c+l]
)

.[a;+?/-fCH l]
r

' [-x-y- z -c-n]
r

*

(1),

in which [c]
r
denotes [o] [c+ l]...[c + r — lj, [c] being the

basic number (q
c—l)l(q—l).

We note the symmetry of the product in x, y, z and the

series in x, y, z, n, but. n is of course a positive integer.

This ^-hypergeometric series is a very general one, and
is a finite case of a ^-hypergeometric series with thirteen

elements.

A great number of interesting particular cases may be
deduced therefrom ; for instance, in $ function theory

oo (1 — 2azqr
cos 2« + a'z'q*)

2 (1 — 2aq
r
cos 2u + a'q")

*>
n
(i_„?

"') (l - oqn
) 1 [1-2/" 1 cos2u + q

vr
']

n

" '
+

iti
q (l-«2") ' (1 ~ q") I [l-2 (^

r cos2«+ayj
1

n

x
(.-. )f« -,) (.-r) a

.

{l-azq )\
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which is interesting in that the factors in the series, con-

taining a, are separate from the factors containing cos 2a.

We note

A = f! (l-aqr yi(l-azr/)\

Again, a special case of this is

«> (1 — 2c<f cos2je + cV)^
'
" (l-2q r cos2u + q'

r

)

00 (3),A being n (1 -qr
fl(l -cqr

)\

Changing q to c/
2 and putting c = <?"* we have an expression

for the quotient of the two functions Sv B
{
, namely,

^ i #,(«) oo . „ sin^M , .

Co* cosec u Q-
4
y-r = 1+ S V'"(l t a ") „ tM

, 4,,, -(4),
#,(") „=i

* *
J
(1-2-2 cob2m+2 ';

v "

in which C= 5 (1 - q
Yry/(l - q

2r~ l

f.
l

Putting u = ^77,

. (l + q^yCl-q"-) '

4q 4g'

i (1-^/(1 + <T)
2 +

i +2
2

i +^ + '"'

which, being easily verified for the first nine or ten terms,

affords confirmation of the correctness of the work.

Some time ago Prof. Morley showed that

l + c
4 + f

c(c + i)
]

3 r{i-j(3c)j

I
2! Pv " r(i-c)r(i + c)r(i-|c;'

The ^-function generalization of this is a particular case of

the theorem (1), but, to economise space, is not stated here.

It will be found in article (7) infra.

If we make s infinite, then, subject to conditions for con-
vergence of the product and series, viz. \q\ < 1, we can deduce

oo (1 —a.ryqr
)(\ — axzqr

)(\ — ayzqr
)(l — aqr

)

,-=i C 1 - aZ(l) C 1 " ay<f)iy ~ axqr
){\ - axyzqr

)

= 1 + 2, o — — .
— y-r AYZ.a ...(5),

where X. stands for ?—- and similarly

for y and Z.
(l-ca^;! *



104 Dr. Jackson, Summation of q-hypergeometric series.

On showing this theorem to Prof. L. J. Rogers as one of

interest in "combinatory analysis", lie was able to identify it

as a theorem given by him*, which does not, I think, in his

notation show the symmetry so clearly as the above form does.

Prof. Rogers points out that there are one or two obvious

errata in his paper, which I state liere.f

(1)

Throughout the paper the following notation will be used

[a] denotes (1 -?")/( 1 - q),

[a]
B „ [a][a+l]...[a + n-l],

W! „ P]p]...[«l

[1-af]! „ (l-aq)(l-aq*)...(l-aq
n
),

(x-af)l „ {x-aq){x-aq i)...{x-aqn
).

The following simple lemma will be required in the course

of the proof of theorem (1). The q factorial product

[as][a; + l]...[a? + n — 1]

may be expressed as

[<T + «»-, W" 1

+•••+<*, [>]"+ «.M + «<»

that is, a rational integral function of degree n in [#], the

coefficients a , a„ a
2

, •• not involving #. Thus

whence

[x][x^l][x + 2]=f[x]^
2

^f^[xj+[2][xl

and, by induction, we can proceed from the truth assumed for

to the truth for

(Vj[a? + 1]...[> + «].

Of course, f" in [#] lias onlv its principal value attached to it.

We can now assert that any two rational integral factorial

functions of degree n in [x], which are equal for n particular

values of x, and, moreover, have equal coefficients of [#]", are

identities.

* I'roc. L M.S., vol. xxvi. (1894).

t Proc. L.M.S., vol. xxvi., p. 29, second equation from the top of the page,

the denominator factors in u and v should be l-Xuq^, 1-Xv?', l-A«?*, l-\v?*, &c,

instead of having «'s and v's only.
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It may seem a fault of form In the following proof of the

theorem numbered (1), in the introduction, that the proof

involves very considerable a priori knowledge of the form of

the series. In the appendix I indicate how such forms are

very simple to arrive at. I place this work in the appendix
so that the main argument may not be interfered with. In
that place too, we arrive at an interesting negative result, viz.

that there are not extensions of the theorem for the case of

four or higher number of variables with symmetry among
themselves.

(2)

Summation of a finite case of ^-hypergeometric series with

thirteen elements.

Consider [x + a] [x 4 b].

If we write —x — a — b for x, the product becomes

[oc + a] [x + b]q- 2x- ('-b
,

so that further

[x + a + 1] [# + a + 2]...[x + a + s] x [x+ b + l]...[x + b + s]

becomes (on substituting — x — a — b — s— 1 for a;)

[x + a + l]
(
[^4Hl]

(

q-2sxr2sar-2sb-s9-s
i

and the factorial function

[ar + a + l],[ar4ft+l],[c+l].[rf+l]
<l

[x + c+l]
n
[x + d+l] n

[a+l]
n
[b + l]

n

"" K h

which has symmetry in x and n when # is a positive integer,

has also the property of remaining invariant when —x—a—b-n—1
is substituted for x, provided a + b = c + d.

Now consider a series

1 + A t>J01D' : + <» + & + " + 1
]

1

[«: + c +l][u + c+l][x + (l + n]

. [x] [sc-1] [»] [w — 1] [a; 4 a f Z>4»+1] [x+ a+ b I w + 2]
2 [x+c+1] [x+c+2][n-{c+l][n+c

t
+2][x+d+n][x+d+n-l]

+ • (7), "

in which A r A^ ... are independent of x and n. This series

is invariant for the substitution —x — a — b— n — l for x when
a + b = c + d. Let us assume this form as a possible expansion
of the product

. [x + a + l]
n [x+b + l]

M [c+ I], [</+!]„

[x + c + l]
n [x + d-\-l]

n [«+!]„ [6+1],,

'
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Give n the value »*, multiply both the product and the series

by [x+ c+l]...[x+c+ r].[x+d+r]...[x±d+l], then, putting

x=—d— J, we find, owing to the vanishing of all terras of the

series except the last, that

[-d-l]...[-d-r].[r]l[a + b-d-r]...[a + b-d+2,— l]

2
|_c + ?-+l][c+r + 2j...[c+ 2r]

= [a-dl.\b-d] r
[c H]

r [d+ll.

[a+l]
r
j>+i], '

whence, remembering that a + b= c+ d, we have, after a little

reduction,

Having in this way determined a suitable form for the

coefficients A , A
x
, ... we proceed by induction.

The identity of the product and series is easily verified

for n= 0, n= l. Let us assume the truth of the identity when

n = 0, 1, 2, ..., (r— 1), namely, for r particular values of n
;

then, owing to symmetry in a and n (n a positive integer),

this assumption also covers the truth of the identity for r

particular values of a, namely, for a= 0, 1, 2, ..., (r— 1).

The functions are invariant for the substitution

—x—a—b—n -1

for x, so that our assumption also covers the case of the truth

of the identity for other r values, namely,

a=x+ b+ r+l, x + b-i r + 2, ..., x+ b + 2r.

If we multiply both product and series by

[x + c + l]...[x+ c + r] x [x+ d+l]...[x + d+r],

on substituting —d—1 for x, all terms vanish except the last,

and we obtain from the product the following expression

[a-d]
r [b-dl[c+ll[d+ll
[a+l]

r
[6+l]

r

and from the series

p-rf- l]...[-d-r].[c + r]...[c+ 2i— 1]

[c+r+l][c +n 2]...[e+ 2r]

c ; LJ
' M 'Hi' [-+i],L^+i]/y
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A little reduction shows that these are identical expressions,

so that we have two rational integral functions of degree 2r

with respect to [a], which are equal for 2r particular values

of a, also having equal coefficients of [a]*. We assert

therefore the following identity for all integral positive values

of??, provided a+ b = c+ d,

[a + q+ l]
n [fl+ 6+1]. [c+l]

t ,
[<?+!],,

[x+ c+ l]
n
[x+d+ l]„[a + 1]„ [b+ 1]„

[h+ c+11, ' [tf+rf+^.-.fc+d+n-r+l]*-

which is a particular cnse of a, a hypergeometric series with

thirteen elements, and is the fundamental theorem in the

present pnper numbered (1) in the introduction.

(3)

The theorem can be thrown, however, into a more sym-
metrical form, which we will proceed to do before considering

the special cases of the series.

Writing y + c for a,

z + c for b,

y+ z + c for d,

we have

[y+ g+c-f i]
n
[a + .y + c+i] II

[iE+y+ c+ i]
n
[c+ l]

ii

[x + c+l]
n
[y+c + l]

H
[z + c+l] n

[x+y + z + c+l]
n

™ J ' 2 ''] ML [-«]r[-y]r[- glr[- W]r~
r=l H '['•]!'[a5+O+l^O+0+l],.[«+<H-l]r[«+«+ 1]r

.x
l-__-^ =p£ £'.... (8).
[-a;-#-a-c-«],.

We note the symmetry of the series in x, y, z, n, but n is

restricted to positive integral values.

(4)

The series and product, when we make the integer n great

beyond limit are both convergent for |<7|<1, and in this case



108 Dr. Jackson, Summation of q-hypergeometric series.

we may write a theorem

oc (1 - axyqr

) (1 — axzqr)(l— ayzqr)(l — aq
r

)

"l (1 - azq
r

) ( 1 - ayqr

) ( 1 - axqr

) ( 1 - axyzf)

so (1— aq'
r

) (l—aqr
)\ „ T„ _

,.=1
* (l-<) (1-/)! ' •

•

where X
r
stands for

(x-l)(x-q)...(x-qr- 1

)

(l—axqr
) !

and similar expressions for y and z are Y
r , ZT.

This theorem is obtained from (8) by making n infinite

and replacing q
x by x, q" by y, q" by z, q

c by a, which theorem

was given by Prof. L. J. liogers in another notation, as

referred to in the introduction to this paper.

(5)

There are many results of interest contained in the forms

(8) and (9), which are, I hope, new, so it may be of interest

to give them here.

A theorem in $functions.

If we put x = e'
lu

,

y = e'
ifu

,

we obtain
oo (1 - 2azqr

cos 2 it + a'z*q
vr

)

^ (l-2aqr cos2u + aY r

»
n
(l-q? 3

") (l-aqn
)l [l-2qr-l cos2u+qw

-2

l
n

(.-i)(.-g)„.(.-0
(

(1 -azq") !

which is an interesting form in that the factors, in the series,

containing £, are separate fiom the factors which contain

cos 2ii.

u4 denotes n (l-aqr
)'l(l -azq

r
)\

On putting a=l, 2 = c, we obtain

oo (l-2cgr
co8 2t< +cy) (1 -<?''/

i
(1— 2y

p
co8 2M+ y

1,r

; ' (1 -of)*

oo
u

sin*» (c—\)(c-q)...(c—q
n~ 1

)= 1+
^ 1

4^(l+ f/Xl-2^n
cos2 W + ^")- (l-c2

n
)!

(11).
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(6)

On changing q to q
1 and putting c=q~i

, we have an
expression for the quotient of two functions theta, namely,

•(12),

. . -5,00 °°
, sin

2
u

in which A = n(l-q' r
yi(l-q"~y,

l

and, on putting u — ^tt
:
we have

r (l+q*-y(l-fy 4q 4y« 4g*

I have verified this up to q
9

, and this serves as verification of

the preceding work. Up to q
36

the series is

+ 8q-
i0+ 8q

vs+ 8q"+ 8q
29-4q 30+ 4q

32
+8q3i +8q*6+ ....

The series on the right is also an expansion of S
3

2
.

(7)

The following form of the theorem is of interest in the

notation of my basic* Gamma-lunation

rji/-\c+i)r
Q
(x+c+i)r

v
(z+c-i-i)r

9
(x+y+z + c+i)

r
9
{x +z+c+l)r

t
(y-ie+o+l)r

q
(x+y+c+l)r^c + l)

oo
[c+2r] [el [-a>]

r [-y\. [-z\
r

~
,-=i ^ M "WI'La + c+.l],. [y+e+ll [«»o+ll y

(13),

and from this, putting z = — ^c, x = y = — c, we obtain

uiV [
[c][c-fl].. . [o + r-l] |» g^ll

+^ •[ [r]! J
* q*+l

__ _r
f
{i-j(8c)}

r
f
ci-«;r

f
(i+o)r

f
(i-io; ^

;

In case ^ = 1 this reduces to the sum of cubes of coefficients

of x in (l—x)~n
given by Professor Morleyf

* rroc. R.S , vol. Ixxvi. A, p. 130; also vol. lxxiv
., p 61.

t 1'roc. L.M.S., yoI. xxxiv.
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Another interesting series is obtained by putting

x=y = z = -c,

when we obtain

s
[c + 2.]| [

C][C +l]...Lc + r-l] |*gr-
[ + 2/-]

f

[c][c+l]...[c

•!i W 1 [r]l

Lil^M (15).
" r

f
(i+c)r

f
(i-o)r

t
(i-fl)r

f
(i-o

Finally, putting x—y—.-Q and making z infinite, we have

1

...it Y b±*n |
[o][c--n]-.,[o+^-i] ]

3

M?-HC ...(16) .Sl+ ' N H 1 MI : "J
- •

Now I have shown in other papers that

M
r

9
(i-c)r

9
(i-fc)

is an elliptic Sigma-funetion closely related to Weierstrass's

Sigma-funetion. Denoting this function S
g

' (wc) we have

where <^ = r
s (i).

This function is such that

S
q
(c + a>)=-q- cS

q
(c),

and has a multiplication theorem*

^(c,^ = const.^(c, W)^(c + ^a,)...^(c + ^a,, W
).

We now proceed to show how the form of the series (1),

which seems so complex, is yet quite simple to arrive at, and

incidentally why such theorems exist only for symmetry in

two elements and three elements only.

Appendix.

The form of the ^-function products and equivalent series

may be arrived at in the following manner. Since

(1- ax) (I -ay) =
(l-aQ(l-y)

(l-a)(.l -axy) ( 1 - a) (1 - axy)

* Proc. U.S., vol. lxsvi. A, p. 131.
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we have

{\-axY(\-a
lj)

n

^ i 2
n \ (1 -x*)(l -y)n

„

(1 - a") (1 - axy)
a r\n- r ! (1 - a") (1 - axyf

a ''

The q factorial product and series (if such exist) must be such

as will reduce to this factor by factor when q is made equal

to unity.

Now the q Factorial product and series corresponding to

this are well known, being

« {\-aq
r
x) (1-qy'y) r=n (1-^,(1-^^(1-^

^
1 (!-«/) [l-axyq r

) r
^[l-aq')\{l-axyqr

) r
(\-q

r

)\
aq " [ h

where (1 — #),. denotes (1 — x) (1 —^-1
)...(1 - xq~

rl1
). From

this we can deduce the q analogue of

r(y-a-ft)r(y) _ «/3

r(7-a)r(7 -j3;
+

i. 7 '

and the formula (A) is of course a particular case of (B),
namely, when q=\, (B) reducing to (A) term by term, factor

by factor, when q = 1.

Similarly for symmetry in three variables

{l-axy) {l-ayz){l-axz){l-a) _ (1 -x) (1 -?/) (1 -g)(l -a'zyz)

(l-a.r)(l—ay)(l-az){l-axyz)~ (l-ax)(l-ay)(l-az) [l-axyz)
'

and, raising both sides to the u
th power, we have

(l-axy)"(l-ayz) n (l-axy)"(l-a) n

(1 — ax)" (I - ay )" ( 1 — az)n\{ 1 - axyz)"

i.Z, V " ! (i-«) r (i-.yr
)fi-g)

,'(i-a%g) r

,r ,p *= 1+2 1-) -r- —

,

»,, „,„^r a l^J>
-I »•! ?/— r! (l-«x) r (l—a?/J

r (l—az) r (1—axyzf

and a ^-hypergeometric product and series symmetrical in

x, y, z, if such exist, must have this as special case when ^=1.
The principal theorem of the foregoing paper is the ^-theorem,

of which (C) is the special case, and may be expressed

r=n (i _ a.ryq
r
) ( 1 — axzqY

) (1 — azyq'') (1 — aq")

,.=1 (1 - axqr

) (1 - ayq
r

) (1 - azqr
) (1 - oa^r

)

Zi
{ } (i-O (i-/;! (i-«^a

(x-'-lXOy-
1 -!),.^' 1 -!), (1 - axyzqn,r

) r



112 Dr. Jackson, Summation of q-hypergeometric series.

where (af
1 — 1),. denotes (x~

l— l)(x'
1— q)...(x~

l

q
rl— 1).

In case ^=1 we see this reduces term by term, factor by

factor, identically to (C) above.

From the form we can gain almost complete knowledge of

the requisite form of expansion of the product (1) in the

preceding paper. Supposing such expansion to be possible.

The question of course arises, how far can we carry t he

method in obtaining similar products and equivalent series

for four or five or higher number of variables possessing

symmetry in the variables? The answer is, that no such forma

exist for more than symmetry in three variables. The
question is settled conclusively by an examination in the case

of four variables of the following product, symmetrical in

(x, y, z, co),

(l-a)(l-aory)(l-axz){l—ayz)[l—axco)(l-ayco){l-azco)(l—axyzco)

(l-ax)[l—ayj(l-az){l-aco) [l-axyz) {l-axyw) (l-ayzoo) [l-axzcu)

while this can be expressed as

(1 -x)(l -y)(l - z)(l - co)
,v N

1 + -i ^- — —
f (a, x, y, z, co),

{l-ax)(l-ay)...(l-axzco)-/ v
'
*'

it is not possible to express /"(a, x, y, s, co) in four factors, viz.

of the form (1 — dxyz) (1 - ayzco) (1 - axzco) (1 — axyco),

which would be necessary if theorems analogous to the pre-

ceding are to exist. Of course this does not exclude the

possibility of special cases of summation, where particular

specified relations exist among the variables x, y, z, co.

The conclusion we reach is that the theorem

r(y)r(y-*-e)_ F( „
}

r(7-«)r(7 -£) * (a'/*'™

symmetrical in a, /3, has its analogue for symmetry in three

elements, and such analogue is a case of hypergeometric series

with nine elements, but that theorems with symmetry in four

or higher number of elements do not exist.

The binomial expansions (A) and (C) are the simplest

cases (^=1) of the ^-expansions, if such exist, and only when
such binomial expansions with symmetry in x, y, z, co, ...

exist can the q series, from which they may be derived, exist.



( H3 )

ON THE GENERATING FUNCTION OF THE
SERIES 2Fo,)qn

, WHERE F{n) IS THE
NUMBER OF UNEVEN CLASSES OF BINARY

QUADRATICS OF DETERMINANT -«.

By L. J. Mordell, Birkbeck College, London.

§ 1. Let F(ii) be the number of uneven classes of binary

quadratics of determinant — n with the convention that the

class (k, 0, h) is reckoned as \ instead of 1, and that ^'(0)

is zero. It is well known that F(n) is a rather complicated

arithmetical function of n, and that one expression for F[n),
is given by the formula (if n> 0)

F(n)=/{d
l
)+f(da

)+...= ^f{d) (1),

where d is any divisor of n such that v/d is equal to the

square of an odd integer. Also f(d), the number of properly

primitive classes of determinant — d, with the same convention
as above for the form (1, 0, 1) is given by the infinite series

/(^{KtVKtVHtM
-^?7l-J <

2
>'

where r takes all odd positive values and (— ]
is

4
the

Legendre-Jacobi symbol of quadratic reciprocity.

The infinite series can be expressed in a finite form, but

from neither of the formulae is it obvious why the function

F(n) should satisfy a number of simple recurrence formulae,

one of which for example may be stated as

F(n) + 2F(n - I') + 2F{n - 2") +...= - 2a + SJ...(3),

where the summation on the left-hand side is continued so

long as the argument of F{n —r1

)
is positive; a refers to any

divisor of n which < *Jn and of the same parity as its

conjugate divisor; but when a = \/n, we take £a in the

summation instead of a\ also b refers to any divisor of a

whose conjugate divisor is odd.

VOL. L. I
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It seems to me that the investigation of class relation

formula**, of which equation (3) is only a very special case,

would be facilitated by the study of the function

xH-^Vwf (4),

i

where q = e'
nlui

, and applying if possible the theory of the

modular functions. For this purpose it is necessary to find

a relation between % (
_ 1/a>)

iUld x(w)i and w,
|

u l,
!'
s ()l,

j
ect

in view, I have converted ^ (a>) into the doubly infinite series

given by

27tv (a>) = S !=° (5),

a,b ^ b y{-i(a + ba>)\Y

where the radical is taken with a positive real partf, a takes

all even values, positive, negative, or zero, and b takes all

odd positive values. The series is not absolutely convergent,

and the summation is carried out first for a; and then for b in

the order 6 = 1, 3, 5, ... . If the series had been absolutely

convergent, the required relation between x(M ) an^ X [~^/w)

could have been found at once by summing it first for b and

then for a. The conditional convergence, however, makes it

rather difficult to find the relation between the two sums. In

this connection it may be noted that EisensteinJ has found

the relation between the sums of semi-convergent series of

the type§

Z{aoo
l
+ba>.y

r
, r= l, 2,

when the summation for a and b is carried out in various

ways, lie has also found the results by means of a definite

integral. But from other considerations I have already found

that
||

f ^--»xW+5^x(-i/.)+iVft.).

* See r.iy paper " On Class Relation Formulae ", Messenger of Mathematics, vol.

xlvi. (lit HI), for references and some account of the subject.

t This convention applies throughout this paper, and here as elsewhere refers

to the quantity inside the square bracket as well as lo JA.

X "Genaue Unlersuchung der unendlichen Doppelpiodncte", Crelle, vol.

xxxv. ( 1 S 4 7 )

.

§ Bee al<o Hurwitz, "Grundlagen einer independentcn Theorie der elliptischen

Modulfunctionen, etc. ", Mathematische Aunalen, vol. xviii. (1881 ).

|| "On some series whose Jith term involves the numbers of classes of binary

quadratics of determinant — »", Messenger of Mathematics, vol. xlix., 1919.
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where

and it seems to nie that Eisenstein's method applied to

equation (5) would only lead to this result. Nevertheless the

series (5) is of some interest not only from the fact that it

reveals the nature of the singularities of the function ^ (w),

but also because the proof of it shows the method of summing
the series which give the number of representations of a

number as the sum of an odd number of squares*.

If it were legitimate to sum the series (5) by grouping
together the terms in which a and b have a common factor,

on noting that

v —mas2
io

s=0

when a is even and prime to 5, and where (j) is the Legendre-

Jacobi symbol of quadratic reciprocity, we should find formally

that

ri(*-l) /«\

^'-n[vi--A M -

where a and b are as before, but, while I think that now also

the summation is carried out first for a, I cannot prove it.f

If a is not prime to b, (y-] = 0, but in the special case when

a = 0, & = 1, we must replace (y- 1 by 1.

§ 2. The doubly infinite scries (5) for % (<u) was founds

originally by substituting for F(n) the infinite series given by

equations (l) and (2), and involved some rather intricate

reduction.

* See my paper, "On the representations of a number as the sum of an odd
number of squares", Transactions of the Cambridge Philosophical Society, vol. xxii.

(1919), pp. 367, 368, referred to hereafter as T.C.'f.S.

f I have since discovered a proof which I add in §6.

j As noted in my paper, T.C.l'.S., p. 369.
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But when 1 arrived at the seiies (5) I noticed that it was

of the type considered by Prof. Hardy* and myselff in

connection with the number of representations of a number
as a sum of an odd number of squares, and which had been

converted into a power series in q of a type rather different

in form from that in equation (4). Thus we have

x {to) = %AM </AfqX (6),

where

1 6 b bodd

i\\u]f(b) denotes the number of solutions of the congruence

s' = M (mod b).

We shall show presently that

AM *JM=F(M),

but it is first necessary to justify the methods leading to

equation (6) owing to the conditional convergence of the

series involved therein. The series! (6) was found by summing

(5) with respect to a. This gave

X^^^i-lf^/^id + bafb'
1

(6a),

where the summation is carried out first for the values a = 0,

1, 2, ..., and then for b= 1, 3, 5, ... . Here 6 denotes such of

the numbers 0, 1, 2, ..., b— \, for which integers s with <s<b
ean be found satisfying the congruence

s
4 = 6 (mod b),

each value of 9 being taken as many times in the sum as

values of s can be found. The step to be justified is the

rearrangement of the series (6a) as a power series in q; i.e.,

writing

6 + bo - M
and summing for b so that the coefficient of q

M \JM becomes

i odd

* Proceedings of the National Academy of Sciences (Washington, U.S.A.) vol. 4,

1918.

t See my paper, T.C.P.S.

X Page 3GG, T.C.P.H.
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Now

where

/,-3?(-i)«
M)

j
w'(«^)'^.

6 odd

But, if o-> 0,

i/.i<s[i ? r"M(. + ,)4]<
(i±^iw,

since 0<5 and the value of d cannot be taken b times. Hence
if

| q |

< 1, the double series

is absolutely convergent and can be rearranged in ascending
powers of q.

The series f is

q _ 2qy/l 2yVl+2gV4 _ 2? Vl + 2gV2+ 2gV4
1 3

+
5 7

-W,
of which the sum of ^ (w + 1) terms can be written as

+^Viw_ 1) j...±/(!!Lzi)},

wheref(r) denotes the number of solutions of

8* = r (mod m).

Now the coefficients of q, q*\/2, ... are convergent series*
;

calling their sum to infinity a, b, etc., we can write

2 2 2
a = l _- + -...+ _ + £,

3 5 hi

* See §3.

12
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where |£,| can be made as small as we please by taking m
large enough, and similarly for b,c, .... Hence, if « = £(/« + 1),

|

S-aq-bq'sj2...-hq- 1

s/(n - 1)|

<^i[ki+v/2| ? r+...v(«-i)i?r]+^

where vj and |£|, which is the greatest of |f,|, [|,|, |£3 |, ..., |£„|,

can be made as small as we please by taking m large enough.

Jt is obvious then that we can arrange jf in a power series for

q, of which the coefficient of *JMqM is given by (since M=
with 0<6 <b)

2(-l)4tM)/{fc)r\
b>M

where & = 71/ t 1, M+2, M + 3, ... in this order, or rather the

odd values in the sequence. Taking now the coefficient of q
M

,

arising from the other values of a (which, as already proved,

give an absolutely convergent series), only a finite number ot

values of b arise, e.g., if

o- = l, M~d+ b so that b<M<2b
t

a = 2, M= 6 + 2b so that 2b < M < 36,

and these values of b give the sum

bo that the coefficient of q
M is as stated.

§ 3. We must show now that

that is

F(M) /(l) f[B) fit) m

where/(»») denotes the number of solutions of the congruence

|* = 71/ (mod 7i).

Noting that if p and q are both odd and prime to each other,

then
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the series for AM, whose convergence is as yet undemonstrated,

can be formally transformed into the infinite product

^-nf, + (
-')"'""/

1t") +
'- 1'"^W

since

(_ 1
)i(P

r-1 ) == (_ 1
)i>-l)''

j

the product referring to the odd primes 3, 5, 7, ... .

As will be seen from the following, there is no loss of

generality in supposing that M is of the form

M^NfsV,
where q and s are different odd primes and N has no odd
squared factors.

Jf^ ' s not equal to either q or s,

/(/)= 1 +
(f),

where (— J is the Legendre-Jacobi symbol of quadratic

reciprocity. Also

-#=1 + 2 1+(f)](-^-V

= i+— P—LA?
(_l)2^- ]

)

_ p\ p )

!
(-lj^-'r

V
The consideration of this infinite product

p\ p A
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where the product refers to all the odd primes except q or s,

shows not only that the series for AM is convergent, hut also

that it is equal to UD
p

. For, writing

M\l „ r 1_\
1 + = n i n

p \ v /J

we Hud'

n = n 1 -
M

where the right-hand n refers to all terms except q and s,

while the summations* refer to odd values of n prime to q
and s. These last two series are special cases of well-known

Dirichlet's scries, and satisfy conditions enabling us to write

their product as a Dirichlet's series. f It is then also legitimate!

to multiply their product hy the absolutely convergent

Dirichlet's series arising from the product

»(

This shows that the Dirichlet's series for II is convergent and

equal to the infinite product. Hence this statement also

applies to the series and infinite products for AM , as is seen

from the formulae we shall now give for D
q
and Ds .

When
i)

is equal to either q or s the number of solutions

of

^ = Nf"s2y (mod/)

must be found. Taking p = q for example, then when r is

even, say r = 2£,

/(<?')

/tf) = 2" 11 +

if r<2a,

N
2

but when r is odd, say r = 2£+ 1,

f(q
r
) = q<- if r<2a,

/(«w( 1 +
(f)}

if r> 2a,

if r> 2a.

* For the equality of the two semi-convergent series in this expression and the

corresponding infinite products, see Landau, Primzahlen, vol. i., p. 449.

t Landau, Primzahlen, vol. ii., p. CS5. See also §G of this paper.

j Landau, Primzahlen, vol. ii., p. 671.
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Hence the expression for D
q , on taking first r = and then

summing separately for the odd values of r < 2a, the even

values of r <2ct, and then all the values of r>2a, becomes,

on putting tj = (—
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we have

Dq '!Mzl +
(
1Ai+...-yfi +'),

q
1
_v \ q q

l

q J \ qJ

q

and similarly for Ds .

Hence AM can be expressed as the sum of four infinite

products, of which the first is

1 f-N\
1

1 +

2v (-ifp-
l
>

\

V

where n refers to all the odd primes. Multiplying numerators
1 l-N\~

ant

beeou

id denominators by II -ll (
] \ , this infinite product

monies 1 P V P /)

;>-/ 1 1 2 _ 1 /- #\

1

p P\ P
q s' it r \ r J

where the summation refers to all odd values of r, and from
equation (2) this is

gV V# *JM J [ }
'

The second infinite product of the form is

where n refers to all the odd primes except ^, and can be
reduced to the form

S7 \ ? ?" 7 7j7 p \ p J
'

where n refers to all the odd primes except q. This last

expression becomes

2 L 1 M « 1 tr- X
7r^ \ 2 q J r r \ r
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where r takes all odd values prime to q. Noting now that

where r takes all odd values prime to q, and taking \= 1, 2, ..., a

we see that the second infinite product reduces to

By symmetry the third infinite product reduces to

The fourth infinite product reduces to

2 / 1 1 \ / 1 1 \ „ 1 /- A7

7r \ q q
al

J \ s s
T 7 r r \ r

where r takes all odd values prime to both s and q, and is also

equal to

Hence it is obvious that the sum of the four infinite products is

,

1f f{M), as was stated.

§ 4. We have also other expansions similar to expansions

(5) and (5a). Let G (n) be the total number of classes of

binary quadratics of determinant — ??, with the same convention

for the forms (k, 0, k) as in § 1, and with the additional con-

ventions that the forms (2k, k, 2k) are reckoned as k instead

of 1, and that (7(0) = — 1/12. Then the expansions corre-

sponding to (5) and (5a) are

*-i
%-a 2 e-nias"\b

tt i [4*»-3G»]0-= 2 ,.'=".
V1 3 -(8),

n=L a,b \/D[*J\— l(a+b(i))\\

g—37ri7(/4

4|
i

[4F(,0-3OW]^=S rvF7^yjT
...

where the summation is taken first for all odd values of a,

positive or negative, and then for all positive even values of b,



124 Mr. Mordelli On the generating

b
exc lading & = 0, while the meaning of the symbol (-

in equation (5a). The difficulty as to the order of summation
in equation (8a) is of the same kind as in equation (5a).

The right-hand side of (8), by summing with respect to a,*
can be written as

2ir^BMM i
q
M

1

where BM= S tmzA
,

b even ^

and (f>(h) denotes the number of solutions of

s' = M-±b (modi) (9),

and b takes all even positive values. The justification of the

rc-arrangement by which we get the term q
M is similar to that

occurring for equation (5) and need not be repeated. We
have now to prove the equation corresponding to equation (7),

namely,

IF{U)-3Q!M) 4,(1,) (,.-.,/+Wi

UM "-
ieL^ (_1) - (10) -

In this sum, when M is not divisible by 4, there is no need to

consider values of b divisible by 8. For, writing b = 8/3,

equation (9) shows that s must be odd so that the solutions of

(9) can be grouped in pairs such as s, 4/3— s which are different.

Hence

s'-M+^S (4/3-s)*-J/+4/3
, 1 ,

..
-80— S 8^ +1 ^°d2>'

so that the sum (10) vanishes for the values of b which are

divisible by 8.

Remembering now that

0{M)= F{M) if M= 1, 2 (mod 4),

3G(M) = iF{M) if M=3 (mod 8),

G [M) = 2F{M) if M = 7 (mod 8),

the truth of (10) easily follows for these values of M from
equation (7). Thus suppose M = 3 (mod 8) and consider first

the case when b is twice an odd number, say 2/3. Then

s"- = M-$ (mod 2/3),

* See my paper, T.C.P.S., pp. 367, 308.
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so that a is even and

s'-M+B /3 — 3

2,3
[mod 2).

Since there is a one-to-one correspondence between the

solution of s* = M (mod/3) and s' = M-/3 (mod 2/3),

Hence the series (10) reduces to — \F(M).
When b is four times an odd number, say 4/3, we have

0(2£)=/(/3).

educes to — %F\
nes an odd nut

= If- 2/3 (mod 4/3),

(mod 2).

so that s is odd and

s
2 -i)/+ 2/3 _/3-l

4)3 " 2

Also *(4/3) = 2/(/3),

-so that in this case the series (10) reduces to %F{M). Hence
the total sum of the series (10) is zero and agrees with the

left-hand side of (10).

When M is divisible by 4, but not by 16 (the general case

when M is divisible by any power of 4 follows at once by
induction), we note that

F{in) = 2F{») and G[±n) = G («) +-F(4n),

so that, on replacing M by 4il/, equation (10) becomes

2F(M)-3G(M) cf>(b) (S--4MHW h1 v

4 >JM J even O

where s
2 = iM—^b (mod b)

and il/ is not now divisible by 4. This congruence shows that

b is twice an odd number, say 2/3, with /3 odd, or a multiple

of 8, say 4/3, where /3 is even. In the first case s is odd and

(•"-^ar+tfj/jaio+i) (mod 2),

so that the corresponding part of (11) becomes

_ i
F^M ) _ _ F (

M
)

Wlien b is divisible by 8, s must be even, say 2<r, so that

a l = M-±3 (mod/3)

and <£(/>) = 2 </>(/3),
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since the number of solutions of

s" = 4il/-2/3 (mod 4/3)

is twice the number of solutions of

a' = il/-i/3 (mod/3).

Hence the corresponding part of (11) becomes half of the

series (10) : that is

AF(M)-3G{M)
4 *JA1

'

and hence the whole series (11) reduces to

2F{M)-BO{M)
4 sIM

as was to be shewn.

§ 5. Though I think the expressions (7) and (10) for F(n) and

G(n) are novel, it should be noticed that they are really special

cases of general results in the arithmetical theory of the

general quadratic form. In the particular case of a definite

form, however, it is necessary to introduce a term called the weight

of the form, which is defined as the reciprocal of the number

of linear substitutions with integral coefficients and determinant

positive unity which change the form into itself. The weight

of a complex of forms is then defined as the sum of the weights

of the non-equivalent forms of the complex, and is a more

fundamental notion than the number of classes of forms of the

complex, as the weight must be known before we can find

the number of classes*.

The conventions adopted in §§ 1 and 4 are such that F(M)

G (M) are practically the weights of certain complexes of

binary forms. But expressions for the weights of the complex

of forms included in a given genus have been given by H.J. S.

Smith and Minkowskif, and the formulae (7)and (10) can

be considered as special cases of these results in the case of

quadratic forms with two variables.

§6. The multiplication theorem quoted in §3 (i.e. Landau,

vol. ii., p. 685) states that if

aB
=0(l/ii),

A(x)= 2 a
n
= A\o[\\\ogx),

* See my paper, "On the class number for definite ternary quadratics",

Messenger o/ Mathematics, vol. xlvii. (1917), p. 65.

t See Baclimann, Zahlentheorie, vol. iv., chap. 10; especially ininkowskis

form of the result on page 021.
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and Jn =0(l/«),

B[x)= S &„= 5+o(l/loga;),
11=1

then ^4Z?=2c
n,

1

where c =^ah ,„

l\n
'

and S refers to all the divisors Z of ??.

//«

This theorem enables me to prove the validity of equation
(5a) [and also of equation (8a)] as follows. Noting equation
(6a) we can write (5) in the form

where

/(/0 = S ,. r /f /
=
°

. , n , , a= 0, ±2, ±4, ...

= 2 7r2(-lp- 1)
a
e+^(^ + H^" 1

, "= <>, 1, 2, 3, ...,
tr

where 6 is as in (6a). Also from

J 7T = 1 _ 1 + 1 _ i +

we find (Landau, vol. ii., p. 676)

where yu, («), the well-known arithmetical function of ??, is

zero if n is divisible by a squared factor, is 1 if «= 1, and
(— 1)'' if n is the product of p primes.

To prove equation (5a) we simply have to justify the
formal multiplication (in the way given at the beginning
of this section) of the series for 27r^ (&>) and 4/7r, as it is

easily verified that [as ought to be the case from the method
of finding (5a)J

Un n r h{b- l) a

m(»)(-i)*
(w1)

±* ~b

mn=i « J "" l)

aeven[V{-i(« + H}]
3 '

This follows [because f(m) is an absolutely convergent series
when summed for «] by putting* a = dA, m = dM, where d is

* Cf. T.C.P.S., p. 3G5.
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the greatest common divisor of a and m, and noting the well-

known result

2/a (d) =0 or 1,

d\N

according as N is not or is equal to 1. The left-hand side

then becomes /(6), omitting those terms in f[b) tor which

a is not prime to 6.

The series for ijir is of the type indicated by 26
n
(Landau,

vol. ii., p. 692). Also, it' 6 is as in (6a),

/(/.)/2 7r= 2(-l)^- 1)

2V/,-
,

+ 2 (-if'T^H^ 1

.

The second series is clearly {q
lb

), where e is small, while

the first series is simply the general term in equation (6b) and

is obviously 0(1/6). Hence f(b) = (1/6). It is also clear

from (66) that

/(ft+l) " 1-/(6 + 2) +...= 0(1/6) =o(l/log6).

Hence the series 2/(6) is of the type indicated by 2an . This

proves the validity of equation (ba), which it may be noted

can be written in the more elegant form*

S2*»<f=2 ^ + Ha>

kci i ba,

where the summation is taken first for « = 0, +2, ±4, ...
;

and then for 6=1, 3, 5, ... in this order. Also d is any even

integer and c any odd integer satisfying ad -be = 1, so that

the general term is independent of c and d, while

<U") = i+2 ? +22
«+2

2
9
+..., 2 =<r°.

Similarly equation (9u), which from the above is clearly valid,

can be written as

f <U») I

s

2 [16F (n) - 12 G(n)]qn = 2 -L (c + da>\\,

where the summation is taken first for all odd positive or

negative values of a; and then for all 6 = 2, 4, 6, ... in

this order. Now, however, d is odd and c is even, while

as before ad—bc= 1.

Cf. T.C.P.S., p. 363.
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THE EXPRESSION OF BESSEL FUNCTIONS
OF POSITIVE ORDER AS PRODUCTS, AND OF

THEIR INVERSE POWERS AS SUMS OF
RATIONAL FRACTIONS.

By Professor A. R. Forsyth, F.R.S.,

Imperial College of Science and Technology.

1. An important theorem in complex integration, originally

due to Cauchy*, leads in certain cases of fairly wide range to

the expansion of uniform meromorpliic functions in series

of rational fractions; and applications of the theorem have
been made by Mittag-Lefflerf, Pieardf, Goursat§, Borel

||,

LindelofH, and others. The purpose of this paper is to obtain,

by means of the theorem in question, some results connected

with Bessel functions of integral order; but it is clear from
the analysis that applications can be made similarly to such

functions of merely positive order, and one example is given.

The theorem can be stated** as follows:

Let F (z) be a uniform meromorpliic function, having
isolated poles and no essential singularities in the finite part

of the 2-plane. In the immediate vicinity of a pole a
u , let the

polar pari of F (z) be

and suppose that the function is regular near the origin.

Further, let complete contours Gm enclosing the origin be

drawn, gradually increasing in magnitude so as to enclose

poles in succession but not to pass through any pole ; and let

them be such that along G'm , as m -> oo
,

\z-*F(z)\

* CEuvres completes de Cauchy, 2. Pi'r.. t. vii
, pp. 324 et seq.

t Acta Soc. Fenn , t. xi. (1880), pp. 273-2<J3.

j Traite <FAnalyse, t. ii., cli. vi.

§ Cours d"Analyse, t. ii., cli. xv.

jj
Lccons sur les f'onctions miromorphes, cli. iv.

•j] Le calcul des residua, cli. ii.

** It is used in my Theory of Functions, § 61 : but, there, the boundary is taken
to be circular.

VOL. L. K
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remains finite (usually it is made to tend uniformly to

zero), p being the smallest positive integer for which the

condition is satisfied. Finally, along this contour, denoting
by 8 the smallest value of \z\ and by lm the length of Cm , let

tm l S be finite. When all these conditions are satisfied, we have

F{x) = F[0) + xF'{0) 4 ...+ -j F'(o)

+ LIm \]G*(^) + S~+*Kt+'»+*8«,\*
»i->oo ?2=i (.

\x—aj
)

where $„};u is the residue of z'^F^) for the pole an
.

Manifestly, the results and the conditions are of an extensive
character. To use the theorem, it is necessary to know the

poles of F(z) and the polar part of F(z) near any pole: to

determine a finite integer p if it exists: and to secure the

finiteness in the value of If 8-.

2. The following applications are made to meromorphic
functions, arising through Bessel functions, such as J^z) / «/ (s),

l/«/
()
(2), and so on. We need the zeros of the Bessel functions

of positive integral order. It is known that for J
n
(z), where n

is a positive integer, z = is a zero of order n, while all the

remaining zeros are real, simple, and associable in pairs with
equal and opposite signs. They are most easily derivable

from the asymptotic expression for J
u {

z
)i

which is

[ttzJ [ 8z 3l(8zf
+'"\

X sin [z — \ti — ^mr).

When we deal specially with the roots of J
Q
{z), we note

that the most important term in this asymptotic expression

for J (z) is

(Ay cos(,_ i7r)>

so that, for large values of the roots, a first approximation to

the p
ih

positive root in ascending order of magnitude is

The earlier positive roots have been calculated*; and, even
at the beginning of the succession, they approximate fairly

* Willson and Pierce, Bull. Amer. Math. Soc, t. iii. (1897), p. 153-155.
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to |tt, J-7T, \
1 tt, ... . For large values of p, and using not

merely the one term in the asymptotic expression, we write

-1 =
;

and we find that the p
th

root tc
p

is given by

1 124

Manifestly, the series

w 1

2 —
P=i %

diverges, while the series

oo l

S P
converges; and so the function J

a
(z) is of class unity, in the

sense of the word class as introduced by Laguerre*, in so tar

as the zeros are concerned.
' Moreover, the roots of J (z) are equal and opposite in sign :

consequently, a function having all the roots ot J simple,

as they are simple for J , is the absolutely and uniformly

converging product

1IKM-
It follows therefore, from the Weierstrass theory of such

products of primary factors, that J (z) is of the form

where I(z) is an integral function of z, which must be even

because J (z) is an even function. It will be proved that

l{z) is zero, by means of the Cauchy theorem already quoted.

3. Next, as regards the zeros of J„ (*), where n is a positive

integer greater than zero, we again note the most important

term in the asymptotic expression for Jn
{z), viz.

-
) cos (s — \TT-\mr)',

•jtz)

and we obtain a first approximation to the p
th root in succession

after z = (which is a zero of order n) in the form

{p + ^-D^
* (Euvres de Lagaerre, t. i., pp. 171-180 ; my Theory of Functions, §§ 59-61.
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Writing ? = (p + i"-i),

a, = l*-4„ 8

,

flj= (l* - 4**') (3* - in*) (5
s - in'),

and so on, and denoting the root in question X
p , we find

^=2-+^-r! (4o
; ^- 3aA+2o ' + 48, '' ) ---

From tills expression for the roots of J
n , it is clear that no root

of any function J of positive integral order is equal to a root of

any other function J" also of positive integral order.

The zeros* of J
n
other than z = are equal and opposite

in pairs. Clearly the series

00 1

P=l \
diverges, while the series

OO 1

p=i \
converges. A use of Cauchy's theorem, corresponding to

the use for the function J {z), will lead to the result that

where the product converges uniformly and absolutely.

When the primary factors corresponding to equal and

opposite roots arc combined, we have

^AiK)-
4. In considering the application of Cauchy's theorem, we

shall require the order of the value of
|

J {z) \, and of

* For references to authorities concerning the zeros of the functions /„(«), a
convenient summary will be found in Nielsen, llandbuch d. Theorie d. Cylinder-

funktivntn, cli. xi.
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for large values of
|
z

\
along a contour. As tliis contour, we

choose a square, centre the origin, having its sides parallel to

the axis, and having one side passing through the point

x = mw, y = 0, where the integer in -> go in a later limit. In

this case* the length of the contour is Smir, and, along the

contour, the quantity \z\>unr; so that the magnitude IJB,

required in the use of the theorem, is 8 and therefore is finite.

Taking the asymptotic expression of the functions, an adequate

estimate will be obtained as to finiteness, if we choose the

first term : so that, for large values of
|

z |, we can take

17 1 I (
2 V (

* ^
\J„ ~ — cos [z--—n

Thus, when n is even,

M*l)
1

i

j I

cos z + sin z
|

j
(cosh 2y + sin 2#)*;

j
(cosh 2y — sin 2x) k

.

and, when n is odd,

_.
|
J, I /cosh 2y— sin 2jj\*

Hence / r^ —rz—;—^r •

|
e/ I

\cosh 2y + $ui2jcJ

Now along the sides of the square parallel to the axis of y,

x = m7T or —imt: thus

I J", I

along those sides. Along the sides parallel to the axis of x,

x is variable and y = ±mir, where in is large; thus

sin 2a;
1

I

-'
cosh 2//

1 +

along those sides. Consequently

I

X
<I±

\z J

sin 2x

cosh 2y

* It is the contour chosen by Goursat for the function cotz-l/z; Court
d" Analyse, t. ii., p. 1C4.

K2
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tends uniformly to the value zero along the contour; and
therefore for the nieromorphic function J

x
{z)lJ (z), the integer

p is unity.

Again, the square includes as poles of this nieromorphic

function the zeros + *,, ±*2 , ...,±«, of tire function J [z).

Now near a root k, we have

=-ej
x {
K

),

and therefore the residue of

is — 1 ; consequently

°.{—)=-—"\Z-kJ Z — K
n

1 lie residue of - J ,

'

is similarly — l/«
n

for the root «
n
and is -f- l/«

n
for the root

— K
n ; hence S

n
is — ljx

n
for the root *

n
and is + 1/«H for the

root — k . Moreover

is zero when 2 = 0; hence

'.«- S (__I-_1V
-OT \ «— *« KjJM

?»->— -JO

and the right-hand side converges uniformly as ??*->cc
;

that is,

J {z) b=-oo \«- *« «,/

But t/'^=-^°'

— log \( l - —) e*/*« 1 = + -

;

dz * [\ kJ J
z-K

n Kn
>

and therefore J {z) = A U \(l - -\ e*/*« 1
,

where ^4 is a constant. Taking *= 0, we have A = 1 ; and

therefore

'.»-.!» {HDH
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and also J
(



1 36 Prof. Forsyth, Products and sums of

hence, when z = \,

consequently, for the function J
n
^{z)\J

n
{z), we have

1 \ 1

\Z - XJ Z - A,

Further, the residue of

I into

for the root z = X, is --. And when 2 = 0, the function
A,

J (z)/J
n
(z) vanishes. Hence

J^(z)_ ?=*>(_!_ 1\

.Now j- —!

)
— - ^r >

ax \srj x

consequently ^ = c'n |(l - £)^ } .

The first term in the customary expansion of J
H

is

and therefore

When the primary factors corresponding to equal and opposite

roots are combined, we have

«7n(^)=^rTTT " (
1_^r,iV ;

2
nn(n) p= i

v a
p

/

It follows, from the coefficients in the power series for

J (x), that
eo 1 1

CO

J^ _ 1

? \~4 ~ 1 6 {« + 1
;" (n + 2)

'

5 '

f \;-§2(W + l)
3
(» + 2)(» + 3)'

and so on.
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6. The preceding result as regards J
n

lias been derived

on the supposition that n is a positive integer; it can be

established on the supposition that n is merely a real positive

number. The only difference is that the position of the

contour has to be changed. We keep it a square, centre

the origin, and having its sides parallel to the axes of refer-

ence in the z-plane; and writing

a = ^rnr,

we make a side of the contour pass through the point

Z = VITT + a,

where m is a positive integer. Then, along the contour,

2 *

J
n \

I z

[—) cos(*-±w-iflir)

|
cos (z — a) + sin (z — «)

|

[cosh 2y + sin 2 (.« - a)}*,

ihlh

As before,

k.,i~I(-)

-)

")'
HZ)

1

ITS
{cosh 2y - sin 2 (;« — a)]K

tends uniformly to zero as m->cc . Also ./
+| /«/ is a uniform

meromorphic function, and F(0) is zero; hence the theorem
applies. The analysis now is formally the same as before;

and we have

2 n(») _* (v p
?
y

where the quantities p^ p 2 , ... are the positive non-zero roots

of J.

The non-zero positive roots of «/^ (.*) are tt, 27r, ... ; and so
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But IT (£) = \irh
; and so we fall back upon the customary

expression for sin a?.

Next, consider J* (.*•). The positive non-zero roots, being

the positive roots of

tan 3 = 0,

are known, from the asymptotic expression for Ji[z)=0,

to be

1 11 1

where l = q + ^,

with #=1, 2, ... . (The quantity a
r
of § 3 is now —8, and

other quantities a vanish.) Hence

si » / sf\

that is,
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and consequently

1 1

777 = — Try + P°S'tive powers.

Hence, for ljJ (z), we have

1 \ 11
\z - k) z — k J

l
(«)

Tlie residue of {zJ [z))~
l

for the root * is the residue of

1 1

K + 6 J (k + if)
'

that is, it is .

k J
x

(K)

The value of ljJ
a
(z) at the origin is unity; hence Cauchy'

theorem gives

1 _ - 1 / 1 1\

J {x) _x «/,(*) \aj — « «/
'

Grouping together the terms for the two roots ±k, we have

1 / 1 1\ 1_ /_1 1

«/,(«; \.c-/c /c/ «/,(«) la; + « /c

J", («] V»
s -k' K

and therefore

1
« „ S, f *„ 1) 1

JM ^[x'-kJ kJ J
x
(k

9

)'

But JL-i+l.a:' + -xt +— a>«-,...
e/ («) 4 64 9.256

for sufficiently small values of a;, necessarily such that \x\ <*.;
and so

2
!

3=1 <<A (*,) 8
'

s __J =A
j^^V.W 128'

§
1 _ 19

while, generally, the value of

i—

*

2=1 % w
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is the coefficient of x2m
in the expansion of

I
1 ~ u) (Tiy

+
(1) I217

" U ) Wf +
""I

in ascending powers of #.

8. In the same way, we have

1 J_ 1 J_

and therefore

gfJ-\ = »
{ 1 +-* 1.

The residue of
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while, generally, the value of

m 2

is the coefficient of xim
in the expansion of

{

i
-(f)"(iV + (f/pW*)VV +T

in ascending powers of ft).

9. Similarly,

1 ~ 1 f 1 3 1

S -r-3 , -3 +
J*(x) ^J

r

3 {{x-K) 3 2/c{x- Ky

1 / 1 \ 1 1 X /l 1\]
+

2 VlT^V ^ +
Tk

+
4 W +

^7 j

1 f 4* 3 6* /« 2\ 1 1
]

« 1 / 1 4 \ _ 3

2=i^g v< + <J-4'
« 1 / 1 16 \ _ 21

j=lW l<
+ <J-6i'

» 1 / 1 36\ 85
+

9=1 <A
3

("
8 ) V «// 3.256'

diile the value of«1/1 4w !

is the coefficient of xim
in the expansion of

{
1

-(?)"(iV'
+ (f/eWt)'(3V+-T

ill ascending powers of a:.

10. Proceeding to the consideration of the inverse powers
of the Bessel functions of positive integral order, all of which
are uniform ineioinorphic functions, we cannot immediately
apply Cauchy's theorem to
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for it is not regular in the vicinity of the origin. On the

other hand, the function

is regular in the vicinity of the origin
; but the integer p, for

the contour that has been taken, is n + 1 ; and for the expression

of the theorem we should require <j> (0), <f>' (0), ...,
(
'O (O),

which are not readily obtainable for a general value of«.
We therefore begin with the function Jr Jt has a simple

zero at z = 0. Denoting its other roots (all of which are real)

by ±/z„ ±/i
a ,
±/x

3 , ..., we have

where r = s -+ ^,

c, = l-4,

c
s
= (l-4)(9-4),

c
3
=(l-4)(9-4)(25-4),

so that 2 — diverges while 2 —- converges. Thus the function

is of class unity.

Owing to the relation between the roots of J and ./,,

the quantity J
n {f*>e ) is negative if s is odd, and is positive

if s is even ; also

|jiwi>|j;wi>rtwi>.-
Further, having regard to the asymptotic value of \J

l
(z)\

for very large values of z, we note that

1 1 1

\z~J\m\ '
| SV» ]

' p7>)|
all tend uniformly to zero for values of z along the large

contour that has been selected. Thus, for 1/,/, (z), the integer

p is equal to unity; for \/J*(z) and l/J*(z) it is equal to two.

We need the expansion of J,{z) in the immediate vicinity

of any root fi. Taking z = /j, + d, we have

»;«-«','+' J7' +£•>,"'+£J.""+-'

where the coefficients are the values of the derivatives at /a.

Now
zV" + zJ' + {z'-l)J =0,

zV" + 3zJ" + z
2
J' + 2zJ = 0,

«V"" + bzJ'" + (3 + »") «/' + 4zJ' -f 2J"= 0.
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For all values of z, we have

hence, for any root //, of Jp we have

2j; = j
a
-j

2
, o = j

o
+ j

2 ,

and therefore J"/ (/*) = J
B (^)

= - J
2 (/*).

It follows that

-and so on. Thus

Consequently, in llie vicinily of any root n of J,

Again, from the expression for «7j(a) in powers oF«, viz.

,W
2 \8 3.64 9.1024

+
5.9.2

14

~'"J
'

we have

2./,
~ +

8
+

90
+

9.1024*
+ '"'

::' 1 »*_l.
19 .«, •

73

4 t/,
a_1+

4
+ 192* +

9.512
*°+

5.9.409*
fc
"+ "

s"
i j,

3
i

5
4 ,

37 , 379 ,

8lr
1 +

S
Z +

64* + 30024* + 3^16384* +'
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1 . . 12.
Now consider the function -j . Manifestly -j is

i i ^

regular at the origin, and its value at the origin is zero. The
function G for the polar part in the immediate vicinity of

any root /* is given by

\z-fxj J {(m) z-fi

1 2
The integer p for the function -= , owing to the contour

that has been taken, is unity; so we require the residue of

1 /l 2

z \J
t

z

for the root /x. This residue is - -y—-. . Consequently, by

Cauchy's theorem, P JM)

— +1
)

1 2
rt

» ( 2 1-+2 2

as an expression for 1/J^z) in rational fractions. When this

result is compared with the above, we infer

^ fir
'J (Hr)

8»

1 1

r=l M,V>,.) 96
'

1 7

,=1 fsV.W 9 - 1024
'

and so on.

11. We proceed in the same way with the function 1/7,'.

The function

1 _ 4

J' z"

is regular in the vicinity of the origin; and there its value is

equal to unity, while its first derivative vanishes. The
function G for the polar part in the immediate vicinity of

any root fi is given by
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The residue of - f_i_ - Al

for a root fi is zero, while the residue of

V WJz)~A
IS

Hence we have

/*) /*'J

J _4 » 1 f //,
2

1
)01

J,

But also

14 7 . 19 73

and therefore 2 . T , # %
=—

,tlft'W 192'

I
* = 19

plrt'W 9.1024'

S 1 73

r=l M>r

6J *
{fir)

5.27.4096'

and so on.

In connection with the function tTj"*^), we note that

1 _j8_ _ 3

j;(z) 7 •

is regular at the origin and vanishes there, while its first

derivative is £. The function O for the polar part in the
immediate vicinity of any root /j, is given by

q ( 1 \ = 1 [ 1 3_ 1 )

The residue of — =-
z J>(z)

VOL. L. t.
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and the residue of —= „.,

1 1
at U IS ; TS , , .

Hence, by Cauchy's theorem,

1 _ J_ _ 3_

Jjjx) ~ x3 X

1 f 1 a 1

= -»a> + S -rrr-ri/ r* +

+
fe " v) + vi

1 f 8/x
a

8 1 1)= | a; + x S r3 . . {7-;—^i + —i r— + , + —,(.

But, from the other expansion,

1 8 3 37 3 ,
379 ,

-"3 + 77 + 8^ +^oa * + iK <h\aq
X + '"'

«/,'(.*) Xs
. X H 3.128 15.2048

1 1 37
and therefore S

r=ll*r
6 ^3

(/0 27.128'

1 1 379

r=l/»fV>r)
3.125.2048'

and so on.

12. The corresponding results are manifestly obtainable

for J,"
1
, J~\ ..., J

3 \ J~\ But the cases must be treated

in separate succession, until the full expansions fur J
n
'\ J~'\ ...

are known.
As already indicated, corresponding results can be obtained

for Bessel functions of positive non-integer order. It is not

(2 \ 2—
J

sin 2, and

the expressions of inverse powers of sins; as sums of rational

meromorphic functions are known. We shall merely deal

with J| (2), the value of which is

/ 2\i /sin z \

and the positive roots of which (§ G) are

1 11 1

't-k-R + M (7^
--'
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where l= q-\±, and q = l, 2, ...; and we take the function

1

j

which is a uniform function of z. Near the origin

and therefore, in that vicinity,

eiJt
,, = 3

(j) (7 + To + positive even powers) .

Consequently,

is a uniform function of z, which is regular in the vicinity

of the origin ; and at the origin we have

^(0) = 1%(M, F'(o) = o.

Also, when (§ 6) we take a contour in the form of a square,
centre the origin, sides parallel to the axes in the «-plane, and
one side passing through

x = mir + |7r, y = 0,

1 f 1 . /ttN* 1| Inthen - < - 3
I

z W*(z) \2j z*\

tends uniformly to zero, when the integer m -> 00 , all along
the contour. Thus the integer p= 1 j and Cauchy's theorem
can be applied.

We need the expansion of J$[z) in the immediate vicinity
of any root a. We have, for sufficiently small values of 0,

J
i
(a + e) = ej

l
' + ^jf + ^j3

'>'

+ ....

Now zV," + zJ\ + (z
3 - 1) J

%
= 0,

so that, for any root o-

,

^" = -1/0-^'.

But 2J{ =J,-Jb 0=^+/-
/ 2 \*

and therefore ^'= ^1 (*) = (-:) Bin <r.
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2 \* sino-

Hence J% (o") =

and, similarly,

ffl-(#J(
x
-i?)

eiD<r-

Thus, for 2 = o- + 0,

f 6* ( 17 \ 1

and consequently

(1/0 + positive powers of 6).

z>J,{z) oUi(cr)

Thus £
'

2 — oy ^*«7i(ff) «"—«""

The residue at a of - .
-

, T , N

1 1

is at once seen to be - . T , . -

Consequently, by Cauchy's theorem, we have

7r\* 1 /7r\*
.
» 1 / !

+ r)

As tr
r

is very nearly equal to (<7 + i) tt, the series on the right

is a converging series except for a value of x equal to any one

of the quantities cr. The values of a for the whole range can

be combined in equal and opposite pairs; so we add the two

terms corresponding to ±c
?

, and their sum is

sin cr
q { \X - <r

q
aJ \x + a

q
a
q
)\ sin cr, \z - a

q
<r
q
)

Thus, finally,

p\!J_J_ 2V» cr
q

/ 1 1

U J n (f) Jfr)
~ + 1 °

X +
3 £ sin cr, W " »/

+
^

a

We at once infer the result

» 1 27

?=1 o^
3
sin o-

ff

- _
2800 '
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and others of a like character, from comparing expansions for

small values of as.

It is. of course, only the fact, that the order of the Be=sel

function selected is half an odd integer, which introduces the

sine-function into the sum on the right-hand side. Had we
taken a fractional positive order n. and denoted the corre-

sponding roots by t . we should have had —Jn . x
{j} instead of

Manifestly, any expansion of positive or negative powers
of functions J for specific positive orders can be obtained; for

the general positive order ??. the expansion of
, , so far

as to give the whole of the negative powers, is required.

NOTE ON THE TRANSFORMATIONS OF THE
SYLOW SUBGROUPS.

By G. A. M

Let Hr H^ .... I7X represent the Sylow subgroups of

order p
m contained in a group G, and suppose that X> 1.

The question considered in the present note is how these

subgroups are transformed by the subgroups themselves. It

is well known that all these subgroups are transformed transi-

tivelv under G, and that X is of the form 1 -f /;/?, but these

subgroups are not necessarily transformed transitively under
themselves as results directly from the fact that in the icosa-

hedral group the ten subgroups of order 3 transform each of

these subgroups into only seven of these ten Sylow subgroups.

To simplify the considerations which follow it is desirable

to recall the fact that if any operator of G, whose order is a

power of p. transforms into itself one of these X subgroups it

must be contained in this subgroup, as otherwise G would
involve a subgroup of order p**\ Hence it results that no
one of these subgroups transforms into itself another of them.
That is. each of these subgroups transforms all of them
according to a substitution group of degree \— 1. Each of

the transitive constituents of this substitution group is of

degree fTt
since the order of a transitive group is divisible by

its degree.

It will now be proved that these X subgroups transform

each of them into 1 + k
tp of the set, where k

t
has the same

L2
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value for each of these subgroups. That is, k
l

h an invariant

of the set of subgroups of order p
m

. To prove the former of

these facts it seems convenient to consider the transitive

substitution group G' of degree \ according to which the

operators of G transform the X subgroups in question. The
subgroup of '', composed of all its substitutions which omit

si given letter, has an invariant subgroup of order p
m

, and as

each of the transitive constituents of the latter subgroup is of

degree p
a

, each of the transitive constituents of the former

must, have a degree which is a multiple of p. Let the letter a,,

which is omitted by this subgroup //,', correspond to 27,.

If a, is replaced by another letter a
a
in any substitution of

order p1* contained in G\ it is also replaced by all the letters

which are found in the transitive constituent of 27,', which
involves a., by some substitution of order, p

3 contained in G'.

That is, a, is replaced in the substitutions of G' whose orders

are powers of p by either all the letters of a transitive con-

stituent of 77,' or by none of the letters of such a constituent.

This proves the fact that 77, is transformed into exactly l+k
tp

of the subgroups of the set 77,, 77
2

, ..., HK by operators

contained in these subgroups, since every substitution, whose
order is a power of p, must omit at least one letter of G '.

When k=l then k
{

is evidently also equal to 1. When
Jc = 2 it is easy to prove that Jc

t

is also 2. This result is,

however, included in the more general theorem that jfe, must

exceed unity whenever Jc exceeds unity. To prove this

theorem it may first be noted that if h
l
were unity while k

were greater than unity the substitutions of G\ whose orders

are powers of p, would all be of order p. A cycle of order p
in 27,', which involves one letter contained in a cycle of order p
involving a,, can contain only one letter which is not found in

the latter cycle. As Jo 1 there is more than one Sylow
subgroup in G' in which the cycles which involve a, contain

the same letters.

Since each Sylow subgroup of G' is of degree kp, it results

that the cycle of order p in 77,', having all except one letter

in common with the cycles of order p which include a,, must

have one letter in common with some other cycle of order p
contained in G' . We have therefore established the following

theorem: If any group of finite order involves more than one

Sylow subgroup of order p"\ each of these 1 + lp Sylow sub-

groups is transformed info 1 + k
t
p such subgroups by the other

Syloiv subgroups, where h\ exceeds unity whenever k exceeds

unity.
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THE EVALUATION OF CERTAIN DEFINITE
INTEGRALS INVOLVING- TRIGONOMETRICAL
FUNCTIONS BY MEANS OF FOURIER'S

INTEGRAL THEOREM.

By S. Pollard.

1. Fourier's integral theorem states that

?l/(*+0)+/(«-0)Hp dp f f(t) cos ft (x-t)dt...{l),
* J J — x>

provided that

[a)
f

\f{t)\dt is finite,

J -00

(b) f{t) satisfies certain conditions in the immediate neigh-

bourhood of x.

One of these conditions is that /(/) be of bounded variation

in the neighbourhood of x. This being so, (1) readily follows

from the second mean value theorem and a simplified form of

de la Vallee-Poussin's theorem on the change of order of
integration in an infinite repeated integral.

A particular kind of function of bounded variation is

evidently one which is equal to some constant in a given
interval and is zero elsewhere.

Let us take

= 0,

/(0 = i, (o«<i)

= elsewhere.

Fourier's integral theorem is true, and we get

| {i + 0] = f dfi f mptdt = f ™£ fa* J o J o Ju/x

C sin?/ . 77-

i.e.
'

dii = -
.

Jo u
J

2
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2. The question now arises as to whether we cannot obtain

the result, still adhering to the same method, but more directly,

i.e. as to whether we cannot remove the dependence on the

general form of Fourier's theorem by giving explicit analysis

which is sufficient to prove the theorem tor the particular

function taken, although it may not be sufficient for functions

of bounded variation in general. It will be found that we
can do so as follows.

3. Lemma I.

——- dd - —- do -> as m -> co .

Jo sintf Jo

The difference between the two integrals is

\

i7r

s\nm6(J--±-)dd
Jo \sm 6

J

cosmO f 1 1 \~\^7r fir ennmd /cos 1\

vT~ \sTnl'
~~

1) Jo Jo wt Un 2 ~ J*

J

1 mrr 2 - it 1 [h* . 1 1 cos 0\ __
= — .cos—— . 1

—

cosmd —
. — .-j-Adv.

»i 2 7T m Jo \0 su\
2

0J

The first term evidently tends to zero. The second term is

less in absolute value than

1 ri-r /l cos#\ 1 rh*- 1 1 _cos0
mi Jo \v

2 mfd) ~ ?n Jo Vsm 2
^

~~
sin'tf

dd

i ri*

m Jo 2 eos"i# m

This completes the lemma

ld = — tan£ir-»0.*

* The above argument depends, as is easily seen, on the fact that -^ — ^—j^
positive or zero in the range (0, £tt). To show this we have Sln '°
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Lemma II. If m is an odd positive integer, then

Jo smtf 2

Let »j = 2^? + 1. It is easily verified that

l + 2cos2fl + 2cos4fl+...-f 2cos2»fl = S 'n^ + 1
)

t
sin

Integrating from to \tt, we get at once

Jo sintf Jo sui0

This is the lemma.

t tit f°° sinwfl ,_Lemma HI. __ dd -> as m -> co .

For, by putting md = <j>, we get

sinmd

Jatt Ji TO7r ^
v »

which tends to zero by the convergence of
f

*inmff
-dd>.

Or as follows: J <p
Y '

qi,i„ , / x fx sinw# _.lake <£(™, x)= —n-dQ.
J ^7T

If we can show that the double limit of (m, x) as ™, x tend
simultaneously to infinity is zero, then a well-known theorem
gives the lemma at once. For the theorem states that if the
double limit as both variables tend together to their limiting-
values exists, and the single limit as one of the variables
tends to its limit exists; then the repeated limit, i.e. the limit
of this last-mentioned limit as the other variable tends to its
limit, exists and is equal to the double limit.

In the case in point the single limit lira
(f> (m, x) is already

X ->oo

known to exist, by the convergence of the integral [

*,nmd
jq

for each value of m. Thus, if we can prove that the double
limit is zero, we have at once

lim [ lim
(p (m, x)] = 0,

m -> oo x "* °°

and this, putting in the value of the inner limit, is the lemma.
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To prove that the double limit is zero, we make use of tlie

second mean value theorem. This gives

2 f£ . „ ,/, 2 [ cos?n01£

where £ is some number satisfying \nr < £ < x> Thus

l4>(»>,x)!<^>

and it is evident that given any positive number e we can

find a number G such that

ltf»(»*.x)l<*>

whenever m and x exceed C7. This shows that the double

limit mentioned is zero and our lemma is. proved.*

TTT f^s'iny 7 r°°sin?>i0 , a .
eLemma IV. —-dy = —^- dd if m>0.

Jo y Jo

Put y = m6 and the result is obtained at once.

Theorem. —^-dy — \ie.

Jo ,v

By Lemma IV.,

as m tends to infinity.

By Lemma 111.,

mu
,

i—

«

lim dd = \\\n\ —— =hm . a dd
Jo 6 Jo # Jo suitf

by Lemma I.

Making m take only odd positive integral values we have,

by Lemma II.,

,. fl» sinwifl .. [^ sin md

Jo sm0 Jo sin 6^

Hence [ *—-dy = \ir, and this is the result required.

Jo y

* This second argument is much longer than the first, but is of a much more

general character. It applies to an integral such as I „ , to which the first

argument does not apply.
4?r
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<*>• i;
£*)**•

Subsidiary Theorem. //<£ (x) is integrable in (0, £)for
all positive values of £, «hc? (&j -» I as x -> oo / ^e»

' dx->l as x->cc*J>>
Tliis is the analogue for functions of a continuous variable

of Cesaro's well-known theorem for functions of a positive

integral variable, namely: If <p(n)->l as n -> co
, so does

0(l)+»(2)+...+ »(**) ^
n

To prove the theorem, we have, since

<t>(x)->l,

corresponding to every positive number e, a number X such
that

\<t>(x)-l\<e,

for x > x. Thus, if £> x,

1 f£ i r
x i r£-

J o
*(a»)db—

^ J

*(*)«k + y Jx
*(*)«fe

lies between

^ ("%(0^ + ^(^-e)andI f
X

(a)^ + IzZ (J+ «).

5 Jo 4 f; Jo 4

Since -p
<f>

(x) dx-> and — > 1, this shows that the

1 f
c

limits of indetennination of -? <h(x)dx lie between I— e

$ Jo
r

and /+e. « being arbitrary we must have

\
jj^)dx->l

m f
00

/siny\ a

7
.

1 HEOREM. f
—-

J
dy = \tt.

From (A) we have

f*
sin?/

Inn — </?/ = t,7t.

*->«Jo y
J "

„, . . sin ?/ f
1

, 7
Writing as cosytat, we get

2/ Jo

lira </?/ cosytdt=^Tr,
a-*» JO Jo

* See Hardy, ^4 Course of Pure Mathematics, 2nd ed., p. 1G0.
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Therefore, by the subsidiary theorem,

lira —
\ dx\ dy \ cos?/tdt=W (2).

£->co £ JO JO
J
JO

J 2 W
Now for any particular value of £, cosyt is continuous

throughout the range

0<t<l, 0<y<£, 0<x<%,
and so we may alter the order of integration, getting

dx dy cosytdt= dt dx cosytdy

Jo Jo t Jo L * Jo Jo t-

Putting t% = 2<p this becomes

(2) now gives

.. fi£ /sindA 2
.

E
'™

Jo \-f)^ =^

iTR*)' *-».»
which is the result required.

It may be noticed that this result is also a particular case

of Fourier's integral theorem. We obtain it by considering

summability instead of convergence. The standard theorem
in this part of the theory is that if f(t) is continuous or has a

discontinuity of the first kind only at x, then

dfi f (t) cos p {x - t) dt

is summable by arithmetic means to ^ir \_/{x + 0)+/{x— 0)], ?>.

fr[f{x+0)+f(x-0)] = j Jo
dx'j

Q
dfij_y{t)cosfi{x-t)dt.

Our result is obtained by taking x = and

/(0=i (o<«<i)

= elsewhere

as before. As in (A) the analysis we give is on the lines of

that needed to establish the general result, but omits, in virtue

of the simplicity of the function taken, several of its compli-

cations.
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THE PRIMARY ABERRATIONS OF A THIN
OPTICAL SYSTEM.

By T. W. Chaundy, Christ Church, Oxford.

§ 1. It is convenient to understand by a thin symmetrical

optical system one in which the thicknesses and the separations

of all the constituent lenses are negligible, and in which
therefore all the refracting interfaces are to be regarded as

possessing a common vertex. Such a system, although it

can, of course, be only approximately realised by concrete

embodiments, yet, theoretically considered, is characterized by
certain properties which entitle it to be looked on as a distinct

category of optical systems, simpler than the general optical

system. It is this comparative simplicity which makes it

a convenient jumping-off ground in any enquiry into the

aberrations of optical systems.

I propose in this paper to restrict attention merely to the
" primary " aberrations, by which I mean those given by the

second approximation where small quantities up to the second
order are retained in lengths measured along the axis, and
small quantities to the third order in lengths measured trans-

verse to the axis.

The aberrations are supposed analysed by the line-coordinate

method which I have described elsewhere.* Reference will

be made to this paper under the symbol C,. The method
relies for its expression of the aberrations on certain optical

constants A, B, C, D, E, F, G, H, 1, J, K, L, expressions for

which are given for the general optical system in a paper
read to the Lond. Math. Soc. in June, 1918. f Reference will

be made to this paper under the symbol C
3

. It will be
convenient to suppose that this present paper is read in

conjunction with a copy of the paper C
3 , since very frequent

quotation of formula?, etc., must be made from it.

The results of C
2

, although establishing formulae sufficient

for the evaluation of the primary aberration coefficients

A, B, ..., K, L, yet present them in a form which a little

practical experience shows is very unhandy. The present
paper aims to replace them in the case of a thin system by
formulae simpler theoretically and more adapted for actual
computation.

* Philosophical Magazine, vol. xxxiv., December, 1917,

f Series 2, vol. xix., part 1, pp 30-ul>.
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§ 2. Degrees of freedom of a thin system. For refraction

at a single spherical surface from medium p, into medium p,',

the vertex of the surface being the origin of both incident and
emergent rajs, we have

fi'm = ixm — (/*' — p.) pu
I to the first order.

[C„ §4, (12), (13), and C„ §3,(12)].
Here p is the curvature ot the spherical surface, m, m

direction cosines of incident and refracted rajs, and u, u their

moments about Oz reckoned positive in the sense y->x.
For a series of refractions at the interfaces of a thin system,

which by definition have a common vertex, we take this vertex

as common origin and so for a second refraction, again to

the first order,

fjt"m" = p!m — (fi" — p,') pa \

u" = u \

Evidently then at the end of n refractions we should have

fiu
mn
= pan — «2 [im — p) p

u
n
=it

But in the notation of C, and C
a
we should have written

m
n
= Pm +

n n =Rm
Thus for any thin system

+ Qu \

+ Su j

!)•

These equations satisfy of course the fundamental identity

FS-QR = p,lp,n .

For [p.

1 —
p.) p we may write k, the power of the surface p,

giving

e=- (*,+*,+...+ «o/*--a/^ (
2
).

where kn
* denotes the power of the system comprising the

first n surfaces. These are, of course, the standard first-order

formula? of a thin system.

Evidently the systems obtained by stopping short after

any n — k of the foregoing refractions are also thin systems,

and so characterized by the property 72 = 0. Reference

* The usual capital K is already required among the aberration coefficients.
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therefore to the subsidiary systems in terms of which the

formulae of C
2 , § 2 (end), are expressed shows that R vanishes

for every such subsidiary system.

It follows from the first, second, fourth, and fifth of these

formulae that

AR-PG = 0,

AS-QG = 0,

CR-PI = 0,

CS -<?/ = (),

i.e. since PS— QR^O, we must have

A = 0=C=G = I (3).

Thus for a thin system the fundamental equations take the form

m = fxm J fi + Qu + \ {Bu(m 2 + ri
l

) + 2Du [mu + nv)

+ (Em + Fa) (u* + v- )},

u' = u + | \Hu [nf+ n*) + 2Ju {mu + nv) + [Km + Lu) (»'+ »*)}.

These equations have the form

fx'm - /j.m = m [u* + v
2

)f [m
a + n\ mu + nv, u* + v')

+ it(p (m* + n\ mu + nv, u
1
-rV),

u —u = m (m
8 + v

7

) g (m7 + ?<
2

, mu + nv, u* + v
3

)

+ u^i [nv + n\ mu + n», u
s + v*),

where y, <p, (}, xp denote polynomial functional forms.

It is not difficult to prove that to any approximation the

fundamental equations of a thin system have this form.

Substitution from (l) and (3) "in the first three identities

0fC„ §4 (21) gives

11=1-/**IS

E-QK+fi Llfi = -Q'fiJfi

Substitution in the identities C„ § 4 (22) similarly gives

D-E=~Q7T f
X
a

J-*//* -1

J-K= - QixJfi-irfi
a

W-

.(5).
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Further manipulation of (4) and (5) enables us to write for

ten of the twelve aberration coefficients

-4 = 0, G = 0,

O=0, 1=0,

£=-/j
'o
L lfj'-fxoQ'

J

lfx'> J=-p
q QIp,

Evidently then the primary aberrations are completely
expressible in terms of two of their number, say F and L,
together with ir, the Petzval sum— a fact of course well

known. The primary aberrations of a.thin system have thus

three degrees of freedom : the first order behaviour of such a
system is completely expressible in terms of a single optical

constant k
x
+ k

2
+...+ rc

n , the power of the system. If we
compare these facts with the corresponding facts for the general
system, we remember that the first order behaviour of the

general system requires three constants for its expression (say

/', dk/dfc^ and B^/d*,, k being the power of the system, and
Kn K

p
those of the end surfaces). Its primary aberrations

possess, as is known, six degrees of freedom. In these facts

lies the characteristic distinction of a thin system to which I

have already alluded.

Having established that the primary aberrations of a thin

system are always expressible in terms of three optical constants,

there still remains for us the choice of what three quantities

should ordinarily be employed for this duty, a decision evidently

of a practical character. Clearly Petzval's sum, 7r, should be

one of the three. It has the merit, not merely of simplicity,

but also of being symmetrical with regard to the two ends of

the instrument : that is to say, it is unaltered if the n
th medium

and the p — n
th

be everywhere interchanged. Such a property

(which it is convenient to speak of as "reversibility") also

belongs to the first order constant /c, + k.
2
-\-...+ k^ the power

of the system.

Mr. T. Smith, in a paper read to the Physical Society,*

proposes for his two remaining constants two quantities, of

which one is "reversible". I wish to suggest two constants,

of which one is reversible, and the other reversible but for a
change of sign.

* Proceedings of the Physical Society, vol. xxvii., p. 495.
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§ 3. The constant D + E.

One of these two constants is the quantity D + E, which

I proceed to express in terms of the powers of the constituent

surfaces.

From the 10th equation of C„ § 4 (19 A), we have, since

the P of every subsidiary system vanishes, that

/* {ES -QK) = -^ {

Q

n
- G_J ( Qnnn

- Qn. xO / (ft,
- *•_,)•

But &=l, A> = 7T = S/c
n /^nntn_ l

.

Also, from (2), <), = - («, +...+ «,)//"«•

Thus, after reduction,

fi {2E-HJT Q) lfi= 2(*> B/0 [2^,(^4 ...+0 - 2/i „_,(*,+ • • .+*J

- («,+...+ *,,)(/*„ -/*„.,)}/(/*„ -/*„-i)

- (f*.+ A**-i) *„/(/*„ -A*-i)1«

it is convenient to write

o-„ = «
1

+...+ /«
m . 1

-(/a
b + /x

)1
_

1
) «„/(/*„- /*„.,) -«„„..•-

V

Also, by (5),

2E-wQ =D+E (7).

Thus
E> + E=(nJn)2KnOrJfMnHn _ l

(8).

§ 4. 7%e oon«ten< 2 {FP- QD)-^
Q
irQ.

The third quantity which I employ is that just named,

2 (FP- #P) - p irQ. To evaluate it we have that

{PS - QR) {FP- QD) = P 3 [FS- QL)

-PQ{FR-PL + DS-QJ) + Q'{DPi-PJ)
,

i.e. by the 7th, 8th, 11th, 12th equations of C
2 , § 3 (19 A),

^{FP- QD)^Sn{QJ^-Qn.J^) [P{Q,-Q
n-,)

But S
u
= 1 and Pn

= fxJfMu
for any thin system.

Thus PQ
n
- QPn = a* (*n+1 +...+*J//W

and

= G* / /*«a*«-«/*p) 1 fo,-i - fO (*« +•••+*„)- **»*.]

•

VOL. L M
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111 us

S (FP- QD) Ipf = 2 [QJ^-QnJ^{KniX +...+ k
p
+wJ

on reduction.

Re-arranging the terms under the summation this again

becomes

2 (Q«lf*n) {(«,+ «»+.+-+ */ - (/*B+,PB+ , + *,It8+-+ «J")

= 2 («.//*.) /•.(P.-O I
2 (*f.+-+*J+/».0>.+ P«0}

Again re-grouping the terms under the signs of summation,
the foregoing becomes

= ~ 2P>„ + 2S (P„//W.) (/*„(*, +.«+0(*.+-+ *J

+ /*»*,, (*,+•• •+ «C, - *„+ i

-• • •- *,)

}

= + Sp
}X+ 22 {kJ fJtnnH_ x) {(«, +...+ *j (« i+1

+...+ «g

+ /*„P„ («,+•••+ *„_, - «„ M -...- *J - jU„ /!„_,?,,*j.

Thus {2{FP-.DQ)-Q\Tr\f*>inQ

'

= 22(nn
-

f
i
n_ l

)p* f 2(*»//WiM 4 («
I
+...+ *J (*„,+.. H/cJ

= 22 0*-OP.8- 2 (*>«^ ,)(*.+-+* - 2P„P -*„,-•••-«/

on reduction. But

*,+...+ *„- 2^npn—Aeafl —...- K
p

= «,+...+ *„.,-(/*„_, + A*Jp,,-*H ,

,-...- «,

= 0",, in the notation of equation (3).

For brevity I further write

7Tj = 2 £T
n
AC
n
//X

]i

/Z
))_ ]

\

(9),

on the left denotes, of course, the same quantity as /j p on the right.
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the notation indicating the dimension in a and the analogy
with

I write also h = 2 (fin
— a*b_i) pn

*
(10)

in analogy with k = 2 (/*„— P„_,)p„, the power of the complete

system. In this notation we have therefore that

2(FP-£Q)-n Q
2
TT = 2H,

QhlS-wJs\
These I propose as the two constants which in conjunction

with 7r should serve as the three fundamental constants in

terms of which every primary aberration may be expressed.

Evidently, if we reverse the system, <r
n
becomes — o-

p_n ;

thus ir
t

is reversible, while 7r, is reversible with change of

sign. By analogy with k it is evident that h is reversible

(without change of sign). Hence 2 [FP— QD) - fi/^ir is

reversible, while D + E is reversible with change of sign

(except of course for possible factors yu
(l

and yu.).

The cpjantity a
n
may be given an analogy with k the

power of the first n surfaces, or more precisely with kn—kn
',

where kj is the power of the last p — n surfaces, which is

possibly useful as a mnemonic or otherwise.

The power of k of a surface is defined as the curvature

of the surface multiplied by the difference of the pA of the

media which it separates. Permit ourselves to define X, the

"power" of a medium, as its refractive index multiplied by
the difference of the curvatures of the surfaces which it

separates, i.e. \ = (p' — p) /j,. The end-media of the system

we may suppose to have the plane at infinity as one bounding
surface, so that

Then

\ + X, + ...+ \., = - Pl fM
u + (p, - pj p., + ...+ (p n_,

- pn) IMn_

= (^i - p (I) ?,+•••+ (*v, - fO p„-, - /v,p 1(

So x
n +...+ \= /*„?«+ *„+, +...+ #„•

Hence a
n
= (A +...+ \J - (\,+...+ AJ,

which is comparable with
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Since &=(\ +...+ X_
1) + (\.+...+ Xj

it is possible to write

X(\+»'+\)*nlWn-i (
12)«

The second term on the right does not however seem so

convenient as 7r
2

.

We may now write the twelve primary aberration co-

efficients of the system as

-4 = 0, £ = 0,

(7=0, 1=0,

E =t* aK - »*) /
2/*> £= "tv

F=hlfi—n-j2fi-kir
l
/2fi,

L=-k3

lfi
s-{ir

1
+ irk)/ 2.

From these formulas the primary aberrations can of course

be calculated ; thus the primary spherical aberration for an
incident parallel beam and semi-aperture y is

l
7/{2 fxhlk*-2kl fx-rxTr + 2

fx7rJk-ixTrJ?c
3

}.

Other formulae given in C,, (7) enable the other aberrations

of a beam originally parallel to be stated in terms of h
1

Jc,

7T, 7T„ 7T
2

.

In particular, it may be remarked that for a stop at

(£) 0, 0), i.e. a distance \ beyond the first surface, the astig-

matism is

Mii.)'m-B)(ft-ir)-{QE-F){Ls-j)}.

If the stop is at the incident focus (i.e. the focus in the first

medium), g= P/ Q and the astigmatism reduces to

tf\p){FP-QD)jQ\

It is known that this astigmatism is unaltered, except for

factors ju, /u
u
, by reversal of the optical system. This is

corroborated by the result of equation (12) and provides an
interpretation of the quantity FP— QD. The question may
be asked whether a set of six reversible constants (including

of course Petzval's sum) can be found for the general system.

]t is possible to develop a set as follows. The quantity

FP- QD, it is known, remains reversible for any system
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(thick or thin). Operation on this with the differential

operators 3/3/c, ± 3/3/^ (which are themselves reversible with

or without change ot sign) evidently generates aberration

constants, which are reversible with or without change of

sign. In this way, a set of five reversible constants can be

added to Petzval's sum to serve for the complete determination

of the primary aberrations of the general symmetrical instru-

ment. The constants so determined do not however seem to

be in as handy a form as could be desired, and it is possible

a more convenient set of reversible constants is discoverable.

For this reason I have limited the foregoing discussion to the

case of thin systems alone.

NOTES ON SOME POINTS IN THE INTEGRAL
CALCULUS.

By G. H. Hardy.

LIV.

Further notes on Mellins inversion formulce.

1. The formula? discussed in Notes XL1X. and LI I. lend

themselves to various transformations. It is worth while to

add a few remarks concerning some of the most interesting

formulae thus obtained.

Suppose, in Theorem A of Note XL1X.*, that ^ (x) =
when x> 1, in which case the second convergence condition

may naturally be dropped; and write

x = e~y, <p (x) = <p {er'J) = x {</).

* There is a misstatement in the enunciation of this theorem. In lines 6, 7,

instead of 'is uniformly convergent throughout any strip « <a' < a <fi' </i, and
represents an analytic function ,/(s) regular in the strip' read 'is uniformly con-

vergent throughout any rectangle

o<a'£<r <0'</3, -T<t<T,

and represents an analytic function./ (s) regular in the stiip a<a <(3'. The error

is verbal only, as the second statement embodies all that is required or used in

the proof.

M2
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We thus obtain

THEOREM A. Suppose that x{y) ts integrable {in the sense of

Lebesgue) in every interval <y < A, and that

f°°

J o

e~ay x{>j) dy,

where a is real, is convergent, so that

(i)
Jo

«-*»x(y)4y

is uniformly convergent throughout any region

a>a>a., -T<t<T,

and represents an analytic function f {s) regular for a> a.

Then the integral

\ ra+iao

(2)
—

.

e>'Jf{s)ds (a>«)

is summable (C, 1), to sum x ('</), f°r almost all positive values

of y. In particular this is true at all points of continuity

ofxig)' more generally, the integral is summable to sum

(3) i{x(2/-0) + x(3/ + 0)}

whenever this expression has a meaning.

The formulae

(4) ^s)=
J"o

fl**M rf*

(5) xCyJ-g^-J^f'/W*

are of course very familiar, and have been studied in a variety

of forms by different writers*.

It is hardly necessary to point out that (5) embodies a

proof of the uniqueness of any solution of the integral

equation (4).

2. I add some examples to illustrate the use of the formulae

(4) and (5).

(a) Suppose that < \ < \ < \ <..., \,->oo
,
and

A {y) =a l
+ a

i
+...+ a

n (\<y< A
B+1 ).

* See for example H. Bateman, ' Report on the history and present state of the

Theory of Integral Equations', Reports of the British Association (Sheffield, 1910),

p. 61.
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Finally suppose that the series 1an
is convergent. Then it

may be verified at once that

(6) f{s) = Za
n
e~^ =^ serwA (y) dy

ifo->0. It follows that

(7) — eV J-±>ds = a
l
+ a

3
+...+ a

H11TI J a-lx S

if a>0, \<y<\n - If y=\+l
the value of* the integral is

This is the well-known formula of Cahen, Hadamard, and
Perron, which is so fundamental in the general theory of
Dirichlet's series. It should be observed however that

Theorem A shows only that the integral (5) is summable, and
not that it is convergent.

It is easily shown that* if the integral (l) is absolutely

convergent for a > a, and x(y) ** °f bounded variation in the

neighbourhood of the value ofy considered, then (2) is convergent
in the sense that

ra+iT
lim e<yf(s)ds

T-><x> Ja-iT

(the principal value of Cauchy) exists and has the value (3).

Applying this result to the present problem, we obtain Perron's
theorem in a form much nearer to that in which it is usually
stated f. There is still something lacking; for in fact

,. r
n+u

"- f{s)
Inn evy-i-i

"„ l\ -> oo J a-il\ s

exists, the use of the principal value being only required
when y has one of the particular values A.

n . This, however,
is of no particular importance; and it is of some interest to

have alternative methods for the proof of so fundamental a
formula. It is plain that the more general formula? for tlie

Rieszian meansj

Sa
n
(o - XJ K

, 1a
H (w - ?J«,

where ?
B = ex », ic = e", may be arrived at in a similar manner.

* 8ee Note XLIX., p. 181.

t See Dr. Kiesz'a and my tract, 'Tlie general theory of Dirichlet's series'
pp. 12-11.

X Hardy and Itiesz, I.e., pp. 50-51.



168 Prof. Hardy, On some points in the integral calculus.

3. (b) It is easily verified that, if

3
(y) = 1 + 2 1 e-»Vy,

then /(*)=[ er*yS(y)dy= .

4 , . (<r>0).y w
Jo

w
' * V*taiiliV*

Tlie simplest method of proof is to substitute for $ (y) from

the functional equation

"vw'H
and integrate term by term.

Now the function /(s) satisfies the Kiccati's differential

equation

Also

/' =
(
Jj r*3 (y) dyj = fQ e->y dy J"*S («) S (y- u) du,

and 7 = 7 f

X

e~^ (2/) * "
J

e"^^
Jo

^ (") du '

Hence, if we write

(y) =
J^3

(u) S(y- u) du - 2yS (y) + j^B (y) du- 1,

we have [ er»J$ {y) dy =/ 2 + 2/'+^ = 0,
jo *

so that $ [y) = 0.

The discovery of this very curious integral equation for £ {y)

is due to F. Bernstein*. The proof originally given by

Bernstein is quite different ; but 1 understand that he had

also found the one which 1 have sketched, and I therefore

shall not enter further into its details.

4. (c) It is known thatf

(8)
J q

e~VJa [my) dy = -L^— -' ^r^f^ ,

* F. Bernstein, 'Die Integralnleichung der elliptisclie Thetiinullfunktion
',

Berliner Bitzungtberkkie, 21 Oct. 1920. [The proof has been published since this

note was written in the Proceedings of Ike Royal Society of Amsterdam.]

t Nielsen, CyUndcvfunktionen, p. l«G.
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if a > 0, m > 0, a > — \. Hence, if also j3 > — \, and

<t>{y)
= u a (y —u)P Ja (mu) Jp(my — mu) du,

we have

jG
e-^(y)dy =

7T (m
z + s

2)«+^+1 '

Hence we deduce the formula

fy
(9) u a (y — uY Ja (mu)Jp(my — mu)du

This formula appears to be new: the particular case in which
a = 0, /3 = 0, viz.

'
i myfy !

(10) I J (mu)J (my-mu)du = -

has been given before by Kapteyn and Bateman*.
We have also

Jo y a ( m j

if a> 0, and

(12) r ^.(^ *_ m*+q-i-

if a>-l. Multiplying two equations of the type (11), or

of the types (11) and (12), and pursuing the same line of

argument as above, we are led to the formulas

,

13
v p Ja(inu)Jp{my — mu) _ q+ff Ja+p (my)

Jo "(#-") a# y

(14)
J'
Ja (mu) Jp (my - mu) — = - Ja+p (my).

* W. Kapteyn, 'On a series of Bessel functions', Proc. Roy. Soc. Amsterdam
vol. 8 (1904), pp. 494-500, and ' Recherches but les fonctions cylindriques

', Mem.
Soc. Roy. cits Sc. de Liege (.'!), vol. t> (190G), no. 6, pp. 1— '-'4

; II. Bateman
'A generalisation of the Legendre Polynomial', Proc. London Math. Soc. (2)
vol.3 (1905), pp. lll-l'-'o. I am indebted for these references to Prof. G. N. Watson!
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In (13) a>0, /3>0; in (14) a>0, /3>-l. The latter is

given by both Kapteyn and Bateman ;
and the former is an

obvious corollary. The integral

(15) (j> {y) = I Ja {mu) Jft [my - mu) da,

where a>-l, /3>-l, is less simple. Multiplying two

equations of the type (12), we obtain

C , , , 1 fV(m
2 + /)- g]^

Vfoi' + s')-*
where o = •

And from this we deduce Bateman's formula

fit

(1 6) Ja {mu) Jp {my - m u) du

= -
{
Ja+p+1 {my) -Ja+p+z{my) + ...},

which also reduces to (10) when a = 0, /3 = 0. The series can

be summed in finite terms when a + /3 is an integer, by means

of the formulae

cosx = J {x)-2J
i
{x)+2J

i
[x)-..., m\x=2J

l

{u)-2J
a
{x)+... .

5. There are of course also a variety of formulae which

are, in substance, transformations of those of Note LU.
Among these I may quote the following:

/ ft
= j"

o

a*" 1 [x) dx, g {s) =^ x^ ^ [x) dx,

C ^2«-i a
(
Xe\) ^ (xe~*) dx= -!-

f e^f (a + it) g (a- it)

Jo ^7r J -co

-co /•=©

f[a) =
J

e-^
tf> {y) dy, g {s) =

J
^
e~^ ^ (y) rfy,

/(«) =
J o

«n« ^ (?/) rfy, g [a) =
jQ

er*n i/, {y) dy,

oo i r 00

fc
-2a«

^ (
M_X) ^ (

M 4 \) rf« = _
J ^^

e^Xty
(
a+ it)g{a-it)dt
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None of these are essentially different from the formulas of

Note LIJ., and the reader will be able to supply the conditions
to be satisfied by the various functions and parameters which
occur in them.

If in the last result we take

<p{y) = ^{y) = y
a-\

we obtain, after some elementary transformations,

f°°
COS2\£ _ 7re-2a\(2 X)2a-l f*d*= - ' p-ia\t [f (1 i /, o-l fit

Jo (t' + aT (r(a)'J Jo
VV +W dL

Each of these integrals is in fact expressible in terms of

Bessel's functions*.

ON TRIANGULAR-SYMMETRIC CURVES.

By Harold Hilton.

§1. The name "triangular-symmetric" has been given to

curves of the type

axk+byk +czk=0 (i),

but their properties have not so far attracted much attention,

even though some very familiar curves are capable of projection

into this form (e.g. k—± 1, ±i, ± 2, §, 3, ...).

We shall suppose Jc rational. Then the curve is algebraic,

and we shall find its Pliicker's numbers and discuss its singu-

larities. By
n, m, 8, k, t, t, D

we shall mean respectively the degree, class, number of nodes,

number of cusps, number of bitangents, number of inflexions,

deficiency of any curve under consideration.

A singularity such as is possessed by

at the origin, p and a being positive integers, will be called a

"branch of type
( p, q) ". Branches of the types (/?, q) and

(q, p) are reciprocals of each other. The effect on Pliicker's

* See G. F. Meyer's edition of Diiichlet's lectures on definite integrals, p. 289,

and G. II. Hardy. 'Some multiple integrals', Quarterly Journal, vol. xxxix. (1908),

pp. 357—375 ^307—358}.
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numbers of a branch of type (p, q) is the same as that of

%{p-l)(p + q-3) nodes, p -1 cusps, £ (q - 1) [p + q - 3)

bitangents, and q - 1 inflexions.*

By a suitable choice of homogeneous coordinates with the

same triangle of reference, the curve (i), supposed real, can be

put in the form

x 7c + y
lc =zk

(ii),

which becomes

xk + y*=a* (iii)

on projecting 3 = into the line at infinity.

The condition that this curve should touch \x + fiy + 1 =0,

i.e. the tangential equation of (iii), is

(-a) l

{\.
l + fx

l

) = l (iv),

where Z= A/(*-l). .

Hence a polar reciprocal of (iii) is a curve of the same kind,

but with kl{k—l) replacing k.

If from any point of (iii) we draw perpendiculars to the

axes of references, the line joining the feet of these perpen-

diculars envelopes the curve obtained on replacing k in (iii) by

Six of the curves obtained by giving a : b : c any values in

(i) have three-point contact with a given conic, say

Ax* + By' + Gz1 + 2Fyz + 2Gzx + 2Hxy = 0.

Their six points of osculation lie on a cubic through the

intersections of the sides of the triangle of reference with its

reciprocal triangle for the given conic, namely, on

{ABC + 2FGH- AFl - BGl - CH 2

) xyz

= [k - 1) {Ax + By + Gz) {IIx 4 By+ Fz) { Gx + Fy + Cz).

For algebraic curves, which alone are considered here,

Jc = ±plq, where ]> and
(Z

are po sit ' ve integers prime to one

another. The case in which k = —p/q can be at once derived

from that in which k = + p/q by replacing x, y, a by l/«, 1/y,

1/a ;
i.e. by a quadratic transformation

-

)-. We may therefore

consider the two cases together.

The rationalized form of (iii) is

n {u>x
k + a>Y - a*) = 0,

* See the author's Plane Algebraic Curves, p. 65, ex. 4
; p. 119, ex. I,

t See Plane Algebraic Curves, p, 1 20.
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the product being taken for all values of w and w', such that

Before investigating these curves we shall give in § 2 one
or two results which will be useful later.

§ 2. If f{x, y) = is an algebraic curve of degree ??,

f(xp
,y

p
) = is algebraic of degree np, p being any positive

integer.

To each node (a, b) ot'J~(x, y) = 0, where a and b are finite

and not zero, correspond jf nodes of / [xp
, y

p
) = 0, namely

(a
p

, b
,p

), where any p
th

roots are taken ; and similarly for

cusps.

To each tangent y = fix to f(x, y) = from the origin (not

touching at infinity or on xy = 0) correspond p tangents

y = fi x from the origin each touching f(xp
, y

p
) = at p

points.

Similarly for tangents parallel to an axis of reference.

Suppose now that f{x, y) = cuts y = where x = c, and
that

f(x + c, y)==VkxY+...,

where 2&ca^ = 0is any approximation to the shape of

f(x \ c, y) = at the origin, i.e. to /(a?, y) =0 at (c, 0) as

given by Newton's diagram or otherwise. Then the corre-

sponding approximation \of{[x + c
lp

]
p

, y
P)=0 at the origin,

i.e. tof(x p
, y

p
) = at {c

!p
, 0), is 2k'x

a
y*

ip = 0, where

h'=p
a
kc

a{p- 1):p
.

For

f{[x + c^p]p, yP) = 2i
[
(x + cVp)p - c

\

ayPP +...= 2k'xayPp +... .

In this k is any constant, and c1 /? is any p
th

root of c, so

that to each finite distinct point of f {x, y)=0 on y=0
(other than the origin) correspond ^> singularities ot'J'(x

p
, y

p
) =

on y = 0, all of the same kind.

Similarly for a5= or the line at infinity.

§ 3. We now consider the algebraic curves

xp!* + y
p:q = ap:q (i),

where p and q arc positive integers.

The case p=l has been discussed*. It is the general
unicursal curve of degree q with the axes of reference and line

* Messenger of Mathematics, vol. xlix. (1920), p. 132.
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at infinity as tangents of ^-point contact. From the results

of the paper just quoted, from § 2, and from the tangential

equation of § 1 (iv), we readily obtain the following properties.

For the curve (i), when p> q,

n=pq, m=p{p-q),

S = {Ip(^-l)(^-3)} + {ip
2 (^-l)(?-2)|

-fr>fa-l)(«+P-»)i

K={3p{q-l)} + \0} = 3p(q-l),

l ={3p{p-q-l)} + {0} = 3p(p-q-l),

In these expressions for S, k, t, i the term in the first of

the brackets
{ }

refers to singularities at infinity or on the axes

of reference. The term in the second of the brackets
{ } refers

to ordinary nodes, etc., situated elsewhere.

Any point on the curve (i) is

X = at
q!p

, y= a{l-t) q!p
(ii),

and the \p* (q — 1) (^ — 2) ordinary nodes are given by

t= sin rir/q cosec [r — s) ir/q e~ *
,

where r, s are any of the numbers 1, 2, ..., q — 1 such that r>s.

These nodes are unreal, except for ^ (q — 1) (q — 2) real

acnodes when p is odd and £ (q—1) iq—3) real acnodes when p
is even.

The ordinary bitangents are obtained similarly from the

tangential equation of § 1 (iv).

Since the line at infinity is a tangent of ^-point contact

of x lq + y
Xlq = a lq

, therefore by § 2 the singularities of (i) at

infinity consist ofp branches of type (q, p — q), the tangent at

each of which passes through the origin. These tangents are

the only tangents from the origin to the curve.

There are similarly p such branches on each axis of reference,

the tangents being parallel to the other axis; as is at once

evident from the symmetry of § 1 (ii).

* See Plane Algebraic Curves, p. 377, ex. 3.
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§ 4. For the curve of § 3 (i), when p < q,

n =pq, m = 2p (q — p),

a-ai»(p-i)b-5)} + {ip'(j-i)(J -2)}

^={3^(^-1)}+ {01=3^(^-1),

r={M/>(2-p)(fZ-P+ l) + 3p-4<Z + 3]j

= ip[±p(q-py+np -l2q + 9l

i={3p(q-p-l)} + {0} = 3p(q-p-l),

D= i(p-l)(p-2).

Tliere are now p brandies of type (p, q—p) at infinity, at

each of which the line at infinity is the tangent; and similarly

for the axes of x and y. The only tangents from the origin

are the axes of reference. The ordinary nodes are found as

in the case p> q.

§ 5. For the curve

x~p!i + y-P'v = arPli (i)

,

we have n = 2pq, m=p(p + q),

B = {lp(pc/+pq-p-iq + 3)} + {hf(q-l)(q-2)}

= 1^(4^-^-122 + 9),

«= {3p(q-l)} + {0} = Sp{q-l),

T-|te(p-l)(p + J-B)I + ft^Q» + f-l)(p + J-2)|

c = {3p(p-l)\i{0} = Zp(p-l),

D = l{p-l){p-2).

At the origin is a multiple point with p branches of type

(q, p), the tangents to the branches being x'' = y". Similarly

for the points at infinity on the axes of reference. The
double points are obtained by replacing x, y, a by 1 / x, 1/y,

\\a in § 3.

§ 6. If in the curve § 3 (i) we project the points at infinity

on the axes of reference into the circular points at infinity,
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we obtain a real curve with the same PHicker's numbers and
the same kinds of singularity as those of § 3 (i)

; but some of

the singularities which were real in §3 (i) may be now unreal,

and vice versd.

We obtain the polar equation of the projection on replacing

x, y in § 3 (i) by re ei
, rerei. It is

rpl9 coapd/q= b
plq

(i),

where ajb = 2 q!p
. Similarly from § 5 (i) we get

rPlq= bPlq cospdlg (ii),

where b/a = 2 9,p .

These curves (i) and (ii) are inverses of each other with

respect to the pole. Many of their properties are very
familiar. For instance, the angle between any two tangents
is proportional to the angle subtended at the pole by their

points of contact. Less well known perhaps are their

Pliicker's numbers and singularities, which are immediately
dedueible by projection from those of the curves in §§ 3, 4, 5.

The curves (ij, (ii) consist of p branches or loops. They
have the symmetry of the regular polygon of p sides, and
have real crunodes on their axes of symmetry, which are

%p(q — 1) oi'ip(q — 2) in number, according as q is odd or

even (excluding the pole).

The real foci of (i) all coincide at the pole if q> p, and
coincide in sets at the points

r-2*A, e = 2ju!p = 1, 2,..., p) t

if p > q.

The curve (ii) has no ordinary foci. The real singular
foci coincide in sets at

r-J/2* e = 2jir\p (;-l, 2, ..., p).
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THE BERNOULLIAN FUNCTIONS OCCURRING
IN THE ARITHMETICAL APPLICATIONS OF

ELLIPTIC FUNCTIONS.

By E. T. Bell.

1. AFTER Glaisher's discussion of the Bernoullian function*

it may seem superfluous to add anything further on sums of

like powers of the natural numbers, as doubtless the formulae

given below either are included in his or may without difficulty

be derived from them. Nevertheless, it is desirable to consider

a set of sixteen such sums in the special forms, differing from
those convenient for most purposes, that are immediately
available for use in the arithmetic of elliptic functions. This
set, as shown in §§ 12, 13, contains all the Bernoullian functions

that can arise in such work; and from the discussion there it

is evident that the appearance of these functions among the

arithmetical consequences of identities between elliptic or other

quotients of theta functions depends upon the infinities of the

quotients involved.

2. Henceforth we shall use m, ??, r, s to denote integers

> 0, of which m is always odd and the rest arbitrary. As
customary, we denote the numbers of Bernoulli, Euler, and
Genocchi by B, E, G, the notation being that of Lucas,f
and write

so that by our convention /3, E, 7, R do not occur with suffix

zero. This remark is of importance in interpreting the symbolic

formulae. Thus, cos7#= 1 — 7J2 ! etc., and not as it would
be in the notation of Blissard and Lucas, y - jj2 ! etc. The
generators of these numbers in symbolic form are

(1) x cot# = cos/?#,

(2) seca? = cosier,

(3) 2x tana; = cosyx — 1,

(4) x cosec# = 2 cosifa; - 1,

* Quarterly Journal, vol. xxix
, pp. 1-168, continued in vol. xlii

, pp. 86-155
;

vol. xxx., pp. 166->04; vol. xxxi., pp. 193-227; Messenger of Mathematics,
vol. xxviii., pp. 36-79. Glaisher points out (first paper, pp. 159—168) that well-
known formulae and the symbolic method usually attributed to Lucas were given
by Blissard, who anticipated Lucas (Quarterly Journal, vol. iv., pp. 279—306,
continued in vol. v.) by 15 years. This method is used in the present paper.

t Theorie de$ Nombres, chap. xiv. The A'-munbers are defined, ibid., p. 254.

For passing from Lucas' notation to Glaisher's, cf. § 10.

VOL. L. N
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the — 1 in the last two entering through our convention.

Similarly, we have (symbolically)

(y + »)
2=7

2+ 2 7, ? * + »'> not y2
+2y

{

n ±y n% etc.

3. The sixteen formulae which we shall consider involve

a function defined by

so that, symbolically,

(6) 2 s'mpx cosqx = s'\n(j> (p, q)%,

(7) 2 cospxcosgx = coa(j>(p
1
q)x,

as is evident on writing the left members as sums. If N is

any one of /3, E, y, B, we have therefore

<l>,(N,n) = 2^N
t
+^)N

t_y +...],

the last term in brackets being n' or f

J
N^u''

1

, according

as s is even or odd. But iffn
{r), /, (r), ... are any functions

ofr (other than y^., Er , yr , li
r),

we retain the usual procedure

of the symbolic method and write

^{/(0,»} = 2[/.W +
(

S

2 )/._ 2 Wn 3

+...],

the last term being n*/ (r), when s is even. Thus the sym-
bolic polynomial

L/» + H}
1+ l/('0 " »}

4 = 2 [/4
(r) + 6,y

2
(r) 4 n% (r)].

An important complementary function \pn (^>, (7) is defined

in § 14.

4. It is convenient to express all sums of like powers of

the natural numbers arising in the applications of elliptic

functions by means of four special sums as follows, of which,

note, the first and fourth are defined only for even values of

the argument, and the second and third only for odd:

T (2«) - 2' + 4'+ 6* + ...+ (2» - 2)',

0, (m) = (- l)
(m- 1)/2

[- 2'+ 4'- 6'+...+ (- l)
(m-1)/2

(m - *)*],

O
t
{m) = l*+3, + 5'+...+ (m-2)i

,

fl,(2n)=(-l)"[-l ,+ 8' -5' +...+.(- 1)'(2»-1)'].
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With these we require the conventional values

^(2) = e
s
(i) = o

s
(i) = o.

From the definitions we have

T (m + 1) = 2
s + 4

s + 6' +... + (w - 1)*,

e,(2n-l) = (-l)',
-
1 [-2' + 4*-G , + ...+ (-l)',

-
,

(2/l -2)'],

0, (2/i + 1) = 1* + 3' +5 8
+. ..+ (2« - 1)*,

a,(m-l) = (_l)^-^
2[-r+ 3

8-5s
+-...+ (-l)

(w- ,)/2
(m-2)'].

The sixteen cases of these eight obtained by putting s= 2r,

s = 2r— 1, give all the sums occurring in the applications

which we have in view, and moreover these forms are those

presenting themselves naturally, so that we can pass to special

results such as recurrences for sums of divisors, etc., without

further transformations. An illustration is given in § 15.

5. The required formulae are those in (1.1) -(4.4), which

are obtained from (1)—(4) on multiplying each in turn by

s\n2nx, sin »i.r, cos2>?#, cosMft,

applying (6) or (7) to the right-hand members of the identities

thus obtained, and finally equating coefficients of like powers

of x. We shall take the cases in the order indicated.

6. Proceeding with (1) as outlined, we use the identities

n-1

sin2/?r»cot;£ = l + cos2h# + 2 2 cos2r#,

(7»-l)/2

sinw?£ cot£ = cos?»# + 2 2 cos(2r— \)x,
r=l

«-l

cos 2^o; cot a; = cot a; — sin 2//?; — 2 S sin2r.r,

r=l

(»»-l)/2
_

cosmx co\x = cosecv — sin mx - 2 2 sin \2r — 1) X
r=l

to reduce the left members of the identities

x sin 2nx cot x = sin 2nx cos/3u;, etc.

In the hist two we must first multiply throughout by r,

replace then xcota;, xcoseca by their /3, R equivalents ami
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expand these before equating coefficients. We find at once

(1.1) ^ |1 (2», /3) = 2(2s + l)[(2ny> + 2Tu (2n)l

(1.2) fml (in, /3) =2 (2s i- 1) [m
u +20Jm)l

(1.3) <j>u (2n,/3)-2f3
2
=4s[(2,<y°-> + 2T

2s_ l
(2n)l

(1.4) ^,8
(m, /3) - iEu = 45 [m*" 1 + 2 O.,,., (m)].

7. The set for Euler's numbers comes in the same way
from (2) and the identities

n

sin 2nxs&cx = 2 (— 1)" 2 (— l)
r
sin(2r — 1) x,

r=l
(m-l)/2

sin mx sec a;

,(m-l)/2
[tan a + 2 2 (— l)

p
sin 2rce],

cos2»#sec#= (— l)"[seca; + 2 2 (— l)
r cos(2r- l)a>],

M-l)/2

coswise seca = (-l) 1 J/

[1 + 2 S (- l)
r
cos2ra>].

We find

(2.1) -_1
(2»,-S)- 40^(2"),

(2.2) *,.., («, E) = I (- l)
(w+1)/2

7„ + 49,.., («),

(2.3)
tf> 28 (2W,^) = 2[(-l)"^, + 2i2

lg
(2n)],

(2-4)
tf> 28

(m, tf) = 49,»-

8. The sets for 7, R may be easily derived by the symbolic

method from those for E, fi
respectively, but the connection

with elliptic functions will be more clearly exhibited by
establishing them independently in the same way as the

foregoing.

From (3) and the identities

sin 2/joj tana; = (-1)"" 1

[l + (- l)
n cos2>^ + 2 2 (- l)''cos2ra],

, lN (»i-l)/2 r / .K(m-l)l'2
sinma? tana?sr(— l)

v ;

[seca; — (— l)
v cosmx

(m-l)/2

+ 2 2 (-l)r
cos(2r-l)afj,

n-l

cos2»a3tan;c = (— l)
n [tanaj+(- l)"sin2nas + 2 2 (—!)'' sin 2 rsc],

cos»i;o tana; = sinwa; —

2

. .... (m-l),'2

(

_^(«-i)/2
s (_ i)«- sin (2r— 1) a?,
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we have the following for the 7-numbers:

(3.1) * ffM (2», y) + 2(-iy(2nr»

= 4(2.9 f l)[-(2n)y
' + 2e

j

,,(2n-l)],

(3.2) ;Jfl
(w, <y)-2m2Hl

= 4 (2s +1) [(-l)M^-m?+2Qu (m-l)],

(3.3)
<t>u (2^ 7)-2(2»)

2*-2(-l)"7
28

= 8*[-(2«y-, + 2e
il_ 1

(2n-l)l

(3.4) <j> u (m,j)- 2m*

= 8s [- m* 1 + 2f2
2a _,

(m - 1)].

9. Fur the numbers i? we use (4) and the identities

n

sin 2?jj; cosecft = 2 2 cos(2r— l)x,
r=l

sin?»^ cosectc = 1 + 2 2 cos2/-£,
r=l

n

cos2»#cosec& = coseccc — 2 2 sin(2r- l)o5,

»-=i

(m-l)/2

cos ?»pj cosec« = cot a; — 2 2 sin 2r.r,

finding

(4.1)
tf, 28+1 (2», i?) - (2nY'

n =2 (2«+ 1) 0„ (2« + 1),

(4.2) <p„n (m, R)-m" 1 - 2 (28+ 1) T
7

,.
(m + 1),

(4.3) ^ (2n,i?)-(2») 2'-2Z?
2s
=450

38
_,(2n + l),

(4.4) ^ (wi, S)-m--/3M =48T
J_I

(m + l).

10. For purposes of comparison with Glaisher's results

and to provide the means for applying some of his numerous
theorems to formulas of the kind illustrated in § 15, we shall

write down the U, V equivalents of the functions in §4, which
we have taken as fundamental. From p. 117 of his first paper
we find the following relations between his functions and our

T, 0:

(s + l>)T(2n) = 2'[Vnx (n)-V^l

(s+l)e^n) = 2'[(-l)
{m+]}i2 U

eiX
-U

!ll {(m+l)l2}]-,

N2
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and from pp. 139, 143 of this second paper these for the 0, 12:

(s+1) O
t
(m) =2'[V,

+X
(±m)- V,n (±)l

(« + l)fl
4 (2«)= 2

8

[?7f+1 (n + i) + (-ir1
Z7m (i)].

Following Lucas we have written B
x

—— |, Ba
= |, B3

= 0,

B
4
— — Jq, etc., and these numbers coincide with the V

t
of

Glaisher (first paper, p. 116), so that our B
2t

is his F
JS , and

V
2t_ l

= B
Si_ l

= 0. It may be of interest to remark in passing

that (1.1)—(1.4) and (4.1)-(4.4), upon elimination of 0, T,

give relations between the /3, R, and similarly for (2.1) -(2.4)

and (3.1)-(3.4) and the 7, E. On further eliminating the

powers not contained in the ^-functions from the resulting

eight relations we find formulas connecting ^-functions alone.

11. Consider the following sums

s„ T
t
{2d), s;e

e (8), 2,/ 0, (8), 2„ ft, (2d),

2n
'r(S+l), S„ 9.(2^-1), Sn

0,(2d+l), S„'XI,{8-1),

in which 2
n
refers to all divisors d of n that are of a specified

kind (L), and 2n
' refers to all the odd divisors 8 of n that are

of a specified kind (M). Let \(n), ps (
n ) denote respectively

the sums of the s
th powers of all the divisors of n of the kind

(L), and of all the odd divisors of n of the kind (M). For
example, (L) may specify all divisors whose conjugates are

odd ; and the odd divisors defined by (M) may be all those

divisible by 3. For explicitness we should indicate the (L)

with S
n
and the (M) with S,,', but to simplify the writing we

have omitted this detail.

Sums of this kind are among the most frequent of those

occurring in the applications, and the formulae (1.1)— (4.4) at

once evaluate them in terms of ^-functions. We recall the

conventions regarding zero suffixes stated in § 3. Clearly

\(>i) is the number of divisors of kind (L), and similarly for

/u (h). These sums being of much use we shall write down
from (1.1) -(4.4) the complete set of formulae giving them.

The numbering corresponds to that in §§ 6—9; thus (1.11) is

from (1.1):

(1.11)
<f>st+i {2\ (»), 0} = 2 (2s + 1) [2%, («) + 2S

n ?;s (2d)l

(1.21) £,„> (m), j3} = 2(2s + l)[».u (m) + 22'
mOu (S)l

(1.31) 4>u {*\(n)
t fi}-20u\(n)
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(1.41) cf>u {^ (mlP}-in,^(m)

(2.11) 4>,t_ i
l2\(n),E} = i2A_

l
(2j)

1

(2.21) ^., {„ («), #} =-1 (- l)(»+l)/27jJUo (m) + 42'
me, i_ I

(8) 1

(2.31) <£
2s {2\00,^j = 2[(-ir^A(») + 2Sfl

24 (2^)],

(2.41) <£
2s {^ (wi),^} = 4S'm9M (8).

(3.11) ^ I
|2X(«),7} + 2

f* , (-l)*XllM («)

= 4(2S +l)[-2'X('0 + 22„e
a6
(2^-l)],

(3 - 21
) *,., W«0> y}-2/»llH (m)

= 4 (2« + 1) [(- 1
)

{
" !- 1,/2 Eup%

(m) -^ (m) + 2SM
'

12,. (8 - 1)],

(3.31)
2s

{2\(n), 7}-2
,'+1 \.(n)-2(-l)n

7s,X («)

= 85[-2"- 1 \
s,. I

(«) + 2SBe 2i.1
(2^-l)],

(3.41) f ff [,,(«), 7}-2 i
u

2i
(m) = 8,[-/, 2,. 1 (

m ) +2Sn
a'

2|_ 1

(S-l)],

(4.11) *,m {2\,(»), 5}-2 J'+,
A.

2g+1
(n) = (2.+ l)Sn 98

(2rf-hl),

(4.21) *mi {/*(m), ^!-^,(»0 = 2(25 + l)S„;2
1

2s
(5 + l),

(4.31) ^ J2\(»),iJ}-2\(«)-2fi!,\,(»)

= 4.vS,
(

a
)s. 1

(2,/+l),

(4.41) tt {//(»0,^}-iU 28
(»0-/3

2s^(»0 = 46Sm r2,_ 1
(^l).

One example will suffice to show the nature of these

formulae. Let £(??) denote the sum of the r
th powers of all

the divisors of n. Then the value of

S (_ l)" [_ l
5
+ 3

5 - 5
5
+. . .+ (- 1

)

d (2d - l)
5

],

in which 2 extends to nil divisors d of n, is given by (2.11),

and is ^s
(2£(n), E), viz.,

*[2
,
fc(ii) + 10.8

i

^fc(«)+ 5.2
4̂ fI

(ii)]

= 16§6 («)-40ri (n) + 25ri
(n).

12. We pass now to the manner in which sums of the

kinds in §§G—9 enter into the arithmetical applications of

elliptic functions and other quotients of the theta functions

#a (x), a = 0, 1, 2, 3. The trigonometric series for such
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quotients as contain -9, (x) or S
3
(a), or powers of these functions

in the denominators will be sine or cosine developments
according as the quotient is an odd or an even function of the

argument, and in addition there will be a term involving

tan x, cot a, sec x, or cosec .r, or a power of these, which
cannot be transformed so as to eliminate 1/eosa, l/sina or

their powers. For simplicity we may discuss only the case

in which the term is tan ex, c being a numerical constant. By
suitably changing the variable this case is referred to that in

which the term is tan a. From any identity between this

theta quotient containing the tan x term and other theta

quotients, we derive by equating coefficients of like powers
of q an identity between sums of sines or cosines of multiples

of the argument, all products of sines or cosines being expressed

as sums; and the latter identity will involve also a term in

tana. If the coefficient of tana? does not vanish identically, it

can be written as a sum of sines or cosine's of multiples of the

argument, so that tan a? contributes terms of the form tana sin??a

or tana cos?za to the identity. If n is odd these terms are at

once reducible to the form (cf. the trigonometric identities in

§§ 6—9) constant times (sees plus sum cosines of multiples of

the argument differing by 2), or a similar expression involving

only sines. If n is arbitrary we replace n by 2/?, the procedure

thereafter being similar to the foregoing.

Next, if tana occurs to a power higher than the first, say

the second, we write tan
2a sin?«a = tana (tana sinwMc), express

tana s'inmx in the form first considered, multiply each term of

the result by tana, and proceed as before with each of the

products thus obtained. The case in which tair\c occurs

requires n repetitions of the process, and obviously the cases

of cot"a, sec"a, cosec"x may be treated similarly. In any of

these cases the final trigonometric identity, after all reductions

as indicated, which was obtained from the identity between
theta quotients, involves sums of the form occurring in the

light-hand members of the trigonometric identities in §§ 0—9.

These final identities may also involve terms of the form tana
multiplied by a constant (independent of a;); and it is easily

seen that such terms must vanish identically.

If now in such a trigonometric identity the sines and cosines

be expanded, and coefficients of like powers of a equated, the

terms arising from that part of the identity which was con-

tributed by tan"a, etc., will contain functions of the kind 0, 2
1

,

etc., of § 4. Obviously the sixteen forms that we have

considered cover all possible cases. Each of them occurs

frequently.
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13. Instead of proceeding as outlined in the last of § 12,

it is advantageous to use a much more powerful method which
precipitates all of the arithmetical information implicit in the

original theta identity into one general formula. Let the a, b

denote integers. Then our final trigonometric identities are

of one or other of the forms

a
Q
+ "2U. coH7i.x = 0, ~2.h. sin??.= ;

and in these the terms arising from tan#, etc., will have their

arguments in arithmetical progression with common difference 2.

Letf(x) denote an even function of x which is single valued

whenever x is an integer = 0, and g (x) an odd function of x,

single valued whenever x is an integer > 0, and vanishing

with x. Beyond these restrictions f (x), g (x) are arbitrary

in the widest sense. Then it may he shown without difficulty

that the above cosine identity implies

and the sine identity implies

From their definitions we may choose as special cases of

f g the following

f(x)=x», g(x) = x"-\

These, substituted in the /, g formulae above, are the forms
which introduce the Bernoullian functions. Another choice

of f(x) leading to interesting results is f\x)=xu when x =
mod n, n a fixed integer, and = in all other cases.

In the forthcoming paper, Part II., numerous^, g theorems
for functions of one or more variables have been given as

illustrations of the general processes considered in Part I., but

no application is made to the special consequences involving

Bernoullian functions. We shall therefore conclude with an
example to show the nature of some of the simpler relations

between divisors that may be found in this way.

14. A function ifs„(p, q), complementary to the f defined

in § 3, enables us to express many of these special consequences

of elliptic theta identities in very simple and elegant form.

It is given by

^„Q, q) = (p + <i)

n -(p-q)n
, + (p, g) = Q;

* These are contained in a theorem concerning functions of n variables which
is proved in 1'nrt I. (Sec. II.) of "Arithmetical Paraphrases", to appear shortly

in the Trans. Amcr. Math. Sue. (January, 1921).
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so that its generators are

2 s'mpx sin qx = — cos xp (p, q)x,

2 cospx sing-.c = sin i// ( p, q) x.

15. As an illustration we shall take a formula relating to

fr (n), the sum of the r
th powers of all the divisors of n. In

the paper on paraphrases it is shown that the trigonometric

identity obtained by equating like powers of q in

«.^xSA*«W
leads, upon proceeding as sketched in § 13, to

2S[/K-<)-/K + <)] ^
= KW-?,W]/(0)-2 2 /(2r),

the 2 on the left extending to all odd positive integers dv d
3

which satisfy, for m fixed (and odd, by the notation of § 2)

m = 2\t
l
8

l
+ d.

2
8
2 ,

and the 2 on the right referring to all divisors 8 of m. If in

this we put f(x) = x", and write
ft.'

(n) for the sum of the r
th

powers of the odd divisors of n, we have

(m-l)/2

2 tfjrCw^r+l), t(8r-l)l-aL'^(» + l)i
»=i

and hence, on referring to (4 21),

(m-l)/2

2(2s+l) S ^„{(r(«-2r + l), C(2r-1)}

For & = 1 this gives

24 "s ft'(«- 2r+l) ft
(2i—l) -«; («)-{",(«) J

and as a numerical check, for ?» = 7, we have

24[rI'(6)rl
(i)+r

l'(4)rI (3)+c(2)rl (5)]=r3 (7)-r,(7) ;

which is correct, since

ft' (6), ft' (4), ft' (2) = 4, 1,1;

ft(l), ft(3), ft(5) = l, 4,6; ft(7) = 344, ft(7) = 8.



( 187 )

ON THE ELLIPTIC FUNCTION
TRANSFORMATION OF THE SEVENTH ORDER.

By Arthur Berry.

It is well known that Jacobi, after developing at the

beginning of the Fundamenta Nova a purely algebraic theory
of the transformation of elliptic functions, applied his method
to carry out completely the transformations of orders 3 and 5,

but did not deal in this way with any higher transformations.

At a later point in the book (§ 20) he gave a general formula
for the transformation of any odd order ?*, which may be
called transcendental, inasmuch as it involved properties of

elliptic functions, and in particular used elliptic functions of

n
th

parts of periods.

Cayley, in his " Memoir on the transformation of elliptic

functions*", and in his book on elliptic functions, discussed

algebraically the next higher transformation of odd order,

that of order 7, but did not succeed in completing the solution.

In a later paper, howeverf, after noticing that the equations

must contain the solution of the problem of the cubic trans-

formation as well as that of the transformation of order 7, he

succeeded in overcoming the algebraic difficulties and gave the

complete formulas, using pure algebra only.

The algebraic work is, however, very laborious, and the

object of this note is to show how it may be materially

shortened and simplified.

The fundamental transformation formula being taken in

the form

\—y l—x/a — fix + ryx— Bx\

'

1+y
=
1+x U + #» + yx2 + Bxy '

Jacobi's algebraical theory leads at once to Cayley's equations

ttV= »«•,

w
6
(2*0 -f 2a7 + fS

2

) = v
3

(2/38 4 7
3

V 27 8),

2aS + 2/3y + 2/38 + 7
3 = uV (2a7 + 2a 8 +& + 2#y),

278+8
,= tt

1V(a,8 + 2a/S),

* Phil. Trans., vol. clxiv (1874) = Coll Math. Papers, vol. ix. no 578.

t Phil. Trans., vol. clxix. (1878) = Coll. Math. Papers, vol. x. no. 692.
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where u, v denote as usual \fk, t/X, Jc and \ being the moduli.

The problem is to eliminate a, /3, 7, 8 between these four

equations, so as to obtain an equation connecting u and v,

the modular equation; and further to express a : /3 : 7 : 8 as

rational functions of u and v.
'

**

The essential idea which enabled Cayley to carry out the

analysis was that, if aS — fiy = 0, the transformation formula

reduces to

l—y_l-x /a — @X\'

1 +y ~ 1+x \a + /3x)
'

the formula for a cubic transformation, so that the solution of

the equations must lead to the formula? for the cubic trans-

formation, as well as to those for the transformation of order 7.

The method which I use differs from Cayley's in re-

arranging the equations, before carrying out the elimination,

so as to put en Evidence the extraneous solutions belonging to

the cubic transformation.

Ignoring an immaterial ambiguity of sign, we replace the

first equation by
u

7

a = v8 (1).

Using this equation we can write the other three equations

S
3
= 8 (2a/3 + 2a7 + &) - da (2/38 + 7" + 27S) = (2),

^ = 2aS + 2/S8 + 2/37+ 7
v-^(2a7 + 2aS + /3

2 + 2/37) = 0...(3),

£
I

= 27 + S-0
3
(a + 2/3) = O (4),

where 6 is written for uv.

We have thus three homogeneous equations in a, /3, 7, 8

of orders 3, 2, 1 ; there are 6 sets of solutions, expressing the

ratios of the variables as functions of #, and we find that of

these G sets 2 lead to the transformation of order 7, while the

others (coinciding in pairs) give the cubic transformation.

From the known formulae for the cubic transformation we
have, in addition to

A = aS-/37= (5),

the equation

7-0/3 = (6).

We aim first at a linear combination of S
3 , Sa , S

{
, which

is divisible by y — 8/3. Writing

,S; = 2(l-0)(/3 + 7)^ 2(1-^/37 (/3 + 7) + /3
s5-0a7

!

,

8, s= 2 (1 - $*) A + 4 (1 - 6
1

) /97 l
2/SS + y

J - 6' (2ay + &),



transformation of the seventh order. 189

we easily find that such a combination is S
t
— /3S

3
+ ff'S^ and

we accordingly replace (2) by

0,-00, +0^3 (7 -0/8) [2 (1-0) A

_(0a _(l_20)/3}(7 -W] = O...(7),

and somewhat similarly we can replace (3) by

S -2/38^2(1-0') A-{2d ia+i0 i/3-0(3- y }(y-0$)... (8).

Taking the solution 7 — 0/3 = of (7), we have from (8)
either

8=1 (which is easily seen to lead to the degenerate
case k''=l, and can be ignored), or A = 0, and these two
equations lead to the cubic transformation. Rejecting this

solution, (7) can be replaced by

2 (1 - 0) A - [0a. - (1 - 20) j3} (7 - 0/3) = (9).

The equations (8) and (9) being homogeneous and linear

in A and y — 00 give either (5) and (6), leading again to the

cubic transformation, or

20\ + 40 3

/3 - 0/3 - 7 = (1 + 0) {0a - (1 - 20) 0} = 0,

whence
0(l-0)a-(l-0 + 20')/3+y = O (10).

Thus, after rejecting the extraneous solutions, we have in

place of the original equations (1) to (4) the three linear

equations (1), (4), (10), and one of the quadratic equations

(8) or (9).

Solving the three linear equations we find

« : /S : 7 : 8 = 20 ( 1 - d) (1 - + 1

)
:
0' (2 - 20 + 2

) - a
8

:$*-(l - 20 + 20')u
s :2(l-0)(l-0+0 2

)il
8
...(ll).

Substituting in (8) or (9), we have an equation in 0, ?t
8

,

which reduces readily to the usual modular equation

(1 - u
8)(l - v

9

) - (1 - uv)
B = (12).

The equations (11) and (12) give the complete solution of

the problem.

King's College, Cambridge
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THE DIHEDRAL ANGLES OF A TETRAHEDRON.

By T. C. Lewis, M.A.

1. There is a set of identities connected with the tetra-

hedron, most of which have been published by Professor

Mathews*, which admit of easy proof.

2. If a, b, c be the edges of the base ABC, and d, e, f the

edges from the vertex D to A, B, C respectively, write

a
, + dt=A, b* + e

2 = B, c'+/ 2 =G;

and let (BC) denote the angle between the faces meeting in

the edge BC, and (ad) the angle between the edges a and d.

Denote the areas of faces opposite A, B, C, D by a, /3, 7, 5;
and let V be the volume and R the circumradius of the

tetrahedron. Then

2ad cos (ad) =B- C v

2becos(be) = C-A I (1).

2c/ cos (cf) =A-B)

3. Let the perpendiculars, h
a
and h

d , from A and D upon
BC meet that edge in P and Q. Then

2hahd cos {BC) = h
2 + h* - (d'-PQ1

),

therefore

8a8cos(BC)=4(a2 + S
2)-a 2

d> + ±(B-C)\
therefore

1 GaS cos (BC) = a" (B + C-A) - &y
a- eV » &V + c

3

/
3- a

2
ef :*

similarly

1 6/3S cos ( Od)= J» (C + ^- B)-

c

3J5- ay2 + d\r+ a\r- bV

IG78 cos (AB) = c*(A +B- C) - aV - 6V + aVJ+ iV - c
3/'

lG/37 cos(^i>)= ^(Z?+C-^)-^/2-^V+^V + oya-aV
167acos(5i>)=g

!,(0+^-5)-aV-^/,+ c
,/'+a,,

«?
,-JV

1 Ga/3 cos ( CZ>) =P {A + B - C) - a'b'- dV-\ a'd
1+ b'e

1 - c
2f /

(2) '

* See Nature, 29th August, 1918.
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4. Write Q for a'b'c* + a
2
e

2f 4 V£f + td\\

Let /= 16aS cos (BC) x 16/37 cos (AD)

= a
2 (B+C-A)-b 2

J
2
-e'c

2 + Ve2 + c
2fi -a 2d3

multiplied by

d* (B+G-A)- e'f - bV 4 6V + c'/* - aV
*

= (5+-(7-^){a 3

cf (5-f-(7-^)-^ + ^V + cy 3 -«VV}

- BC(bV 4- c'f - aV) + ad* 4 &V 4 c
4

/
2

- 2aV (6V 4- c
2/

*) + 2&W/"

= (#4 (7- J) {a'(f(5+ 0-4) + &V(0+4-5j

4V/* (44-5-0)-$

4 &V(5+ 0-4) (5- 0)+oy*(fi+ 0-4) (
C-B)-a\PA {B+ G-A)

+ a*d\BC+ 6V (0"- BC) + c'f [B2- BC)

+ a*d* 4 bY + c
4

/
4 - 2&W/' - 2c'/W - 2aOTes

= (^+C-^).144r^ + aW 4 4^V + c
4

/
4 -2iVcy 3 -...

4V^(4-£)(4-C)4-&y(£-4)(£-0)4cy"3
(0-4)(0-2?,.

Therefore

/=(£ + G-A- iR2

). 144 V*+ a*d* [A -B)(A- G)

+ bV(B-A) (B-C)+c 2fi {C-A)(C-B).

So J=256afiy8 cos (CA) cos (BD)

= (C+A-B-iR2)AUV 2
-ta

2d 2 (A-B)(A-C)+...

and 2T= 25Got/37S cos (AB) cos ( 0Z>)

= {A+B-C- 1&) . 1 44 V 4 &c

Thus /= - 288,1 F 3 +//

J=-288BV +H\
iC=-288CF 3

4-//.

5. The following identities are therefore at once established

:

From (1)

ad cos {ad) 4 be cos [be] -\-cfcos{cf) = (i).
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From (2)

ah cos (BC) d 2 + /38 cos{GA) e
2 + &c. = 27 F..:(ii).

From (3)

ad cos (ad) cos (5(7) cos (AD) + be cos (be) cos ( (L4) cos(BB)

+ cf cos (cf)cos(AB)cos(CB) = (iii),

4a(3y8 {cos (AB) cos(CD) - cos(CA) cos(BD)}

= 9adcos(ad)V2
(iv),

and two other similar identities.

6. If the tetrahedron is orthocentric A = B= C, and H in

(3) reduces to

lMV*(A + B+C-iR'),

where A +B+C is the sum of the squares of the edges. Also

cos(AB) cos(CD) = cos(BC) cos(AD) = cos{CA) cos (BD).

END OF VOL. L.

D •
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MESSENGER OF MATHEMATICS.

ON THE EARLY HISTORY OF
THE SIGNS + AND - AND ON THE EARLY

GERMAN ARITHMETICIANS.

By J. W. L. Olaisher.

Part I.

Introduction, §§ 1-5.

§ 1. It was at one time believed that the signs + and
— were introduced into algebra by Stifel in bis Arithmetica

Integra of 1544*, but in 1864 De Morgan contributed to the

Cambridge Philosophical Society a paperf in which he

Bhowed that they had been used by Widman in his Rechenung

of 1489$. This fact had however been previously noticed and
pointed out by Drobisch§ in 1840; and his discovery of the

signs had been noted by Gerhardtjj in 1843 and by CantorH
in 1857.

De Morgan in his paper not only drew attention to the

existence of the signs + and — in Widman's book, but he

inferred from the mode of their occurrence that Widman or

some predecessor had derived them 'from the warehouse', so

that they had a commercial and not an arithmetical origin.

* The first use of the signs + and - was attributed to Stifel by Hutton [Phil.

and Math. Die, vol. i., article " Characters ") and accepted by Kliigel f Wurterbuch,

vol. v., l&'l, article "Zeichen"). Chasles (Aperqu hidorique, "2nd edn., 1875,

p. 539), referring to Stifel's Arithmetica Integra, without explicitly stating that

Stifel was the inventor of the signs, writes "On y trouve les signes +, — et le

signe radical J" Libri says of the Arithmetica Integra: "This celebrated work
is generally believed to be the first in which the signs +, — appear for plus and
minus, of which he claims to be the inventor;" and he quotes from Stifel's

Deutsche Arithmetica (1545) the passage in which he considers that this claim is made
(Libri's sale catalogue of his library, nos. 593 and 594, p. 73. The sale took place

April 25, 1861, and following days). This supposed claim is referred to in §59.

f "On the early history of the signs + and — " (Camb. Phil. Trans., vol. xi.,

1871, pp. 203-212).

X "Bebede vnd hubsche Kechenung auff alien kauffiuanschafft." ^ Leipzig,

1489).

§ "De Ioannis Widmanni Egerani . . . compendio arithmeticae mercatorum . . .

sciipsit Mauritius Guilielmus Drobisch" (Leipzig, 1840).

||
Qrnnert*s Arehiv., vol. iii., p. 291.

Zeitschriftfiir Math, unci Phys., vol. ii., p. 3GG. In this paper Cantor states

that in spite of Drobisch having found the signs in Widman's book, their invention

was still generally attributed to Stifel.

VOL. LI. B
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§2. In connection with Stifel's writings upon which I had
been engaged, I was led to examine Widman's Recheming
carefully, and I found myself unable to agree with most

of De Morgan's conclusions and suggestions. The result of

this examination and the inferences derived from it form the

subject of the principal portion of Part I.

§ 3. It seemed likely that the arithmetics published sub-

sequently to that of Widman might throw some light on the

question whether his manner of using the signs 4- and — was
due to the fact that they represented modes of expression

which were employed in commercial transactions, or was
derived from some other source, or originated in himself;

and with this object I examined the principal arithmetics and

algebras published in Germany up to 1550 and noted the

occurrences of the signs + and -, or the words plus and minus,

or mehr and weniger, both in the explanations and in the

examples, paying special attention to the class of questions in

which Widman used + and — . The results of this examina-

tion are contained in Part 11.

§ 4. In the course of the work connected with Parts I. and

II. I met with references to the writings of Wappler, Curize

and others, and when these two Parts were practically

completed, I turned my attention to their investigations, which

mainly related to manuscripts earlier than Widman's book,

some of which had actually been in Widman's possession.

The manuscripts give valuable information with respect to

the previous history of the signs + and — and to the use

of the words plus and minus. The results derived from the

study of these papers are contained in Part III. I have

thought it desirable to keep this Part quite distinct and
to print Parts I. and II. as they were originally written*, for

they were derived entirely from an examination of Widman's
Rechenuiig and its successors before I had read the manuscripts

referred to in Part III. The conclusions in Parts I. and II.

are in striking agreement with those which resulted from an

examination of the earlier writings.

§ 5. The preceding paragraphs give a general idea of the

contents of the three Parts, as distinguished from each other,

but in each Part other questions having some relation to the

* When writing Parts I. and II. I had not seen Tropfke's "Geschichte der

ilementar-matliematik" (Leipzig, 1902), aud the references to this work have been
added subsequently.
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main questions .are included, as for example, Widman's use of

the cossic signs in Part I., the words t'usti and tara in Part II.,

and matters connected with the early history of algebra in

Part III,

It will be seen that although the history of the signs + and

— forms the main subject of the paper there are a number of

other questions relating to the arithmetic and algebra of the

fifteenth and the first half of the sixteenth century which are

also referred to.

With respect to the origin of the signs -f and -,

I consider that all the evidence shows that they were derived

from algebra and not from commerce. This opinion resulted

from a study of Widman's book itself, and it is abuudantly

confirmed by the writings quoted in Part III.

Printed arithmetics of the 15th century, §§ 6—7.

§ 6. Before describing the manner in which the signs

+ and — made their appearance in Widman's Bechenwig,

it is convenient to mention the principal printed arithmetics

of the 15th century: these are

1° The Treviso Arithmetic (Treviso, 1478).

2° The Bamberg Arithmetic (Bamberg, 1483).

3° Borgi (Venice, 1484).

4° Widman (Leipzig, 1489).

5° Calandri (Florence, 1491).

6° Pellos (Turin, 1492).

7° Paciolo (Venice, 1494).*

An account of the anonymous Treviso Arithmetic, 1478,

is given by Eugene Smith in Rara Arithmetical pp. 3-7,

where there is also a facsimile reproduction of its first page

and of other pages.

The Bamberg Arithmetic (1483), believed to have been

written by Ulrich Wagner, is described by Cantor in vol. ii.

* I write Paciolo in preference to Pacioli or Paciuolo. Fov a long time

Pacioli was much the most usual form, though Paciolo also occurred. In
188'J Staigmuller introduced the spelling Paciuolo which was adopted by Cantor,

Enestrom, Eugene Smith, and some German writers. My reasons for preferring

the spelling Paciolo will be given in a separate paper, as they would occupy
more space than can be afforded in a note.

t-
" Kara Arithmctica. A catalogue of the arithmetics written before the year

MDCI witli a description of those in the library of George Arthur Plimpton of

New York by David Eugene Smith of Teachers College Columbia University
"

(Boston and London, 1908). I have found this work most useful and valuable.

A number of the title pages of the arithmetics described in it are reproduced in

facsimile, and whenever I shall hare occasion to mention a book of which the title

page is reproduced in Rara Arilhmetica I shall merely give a t>hort title and a

reference to the page where the reproduction appears.
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of his Vorleswigen, 2nd edition, pp. 221-227*, and by linger,

Die Methodik, pp. 37—40f. Both Cantor and linger also

describe the fragments of an earlier arithmetic, probably by

the same author, printed at Bamberg in the previous year.

Borgi's Arithmetic (1484) is a good mercantile treatise.

It bears the title "Qui comenza la nobel opera de arithinethica

lie la qual se tracta tute cosse amercantia pertinente facta e

compilata per Piero borgi da veniesia ". A reproduction of

the first page is given in Rara Arithmetical p. 18. There
was a second edition in 1488. The title of Widman's book

(1489) is given in § 8.

Calandri's Arithmetic (1491) gives the fundamental pro-

cesses of calculation, and the rule of three with applications to

commercial questions. There are a great many fancy or

puzzle problems. None of the commercial questions are

of much complexity. The title page and other pages are

reproduced in Sara Arithnetica (pp. 46-49). The first page

of the book commences "Philippi Calandri ad nobilem et

studiosii3 Julianum Laurentii Medice de ariinethrica opusculu".

Pellos's Arithmetic (1492) is much more complete and
practical and it contains numerous mercantile applications.

The title is " Sen segue de la art de arithmeticha et semblat-

ment de ieumetria dick ho nominate Copendid de lo abaco ".

The title page and one other page are reproduced in Rara
Arithnetica (pp. 50-52)t.

Paciolo's work (1494) is of a very different character. It

is a large folio volume and probably contains a full account of

all that was then known of arithmetic, and algebra. There
are numerous commercial questions, some of which are very

complicated : also explanations of commercial terms and
methods. It is a fine and comprehensive work. The title

page is reproduced on p. 55 of Rara Arithnetica.

§ 7. It thus appears that before Widman's book only three

practical arithmetics had appeared in print, two in Italy (in

Italian) and one in Germany (in German). No printed algebra

had appeared, Paciolo's Summa (1494) being the first book

which contained algebra.

* " Vorlesnngen liber geschichte der nmthematik von Moritz Cantor ", vol. H.

(Leipzig, 1900). All my references will be to the second edition, which has since

been reprinted without alteration.

t
" Die methodik der praktischen arithmetik in hi3torischer entwickelung . . .

von Friedrich Unger" (Leipzig, 1888).

J I mention only practical arithmetics in which the processes of addition,

subtraction, multiplication, division, and the rule of three are explained. Such
books are necessarily to some extent commercial. I omit the few arithmetics of

this period on the Boethian system : these are described by Eugene Smith in

Rara Arithmttica.
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Borgi's Arithmetic was published five years before Wid-
man's, and Paciolo's Stimma five years after. These works

afford abundant evidence of the state of arithmetic and its

applications in Italy at the period when Widman was engaged

upon his Rechenung.

Widman's Rechenung o/"l489, §§ 8-10.

§ 8. Widman's book was published at Leipzig in 1489.

Its title is "Behede vnd hubsche Rechenung auff alien

kauffmanschafft": and the colophon is "Gedruckt In der

Furstlichen Stath Leipczick durch Conradu Kacheloffen Im
1489 Iare".

The next two editions (to which I shall occasionally refer

for comparison with the original edition) were published at

Pforzheim in 1500 and 1508. Later editions were published

at Ilagenau in 1519 and at Augsburg in 1526*.

The book consists of the rules of arithmetic, fractious, pro-

portions, progressions, rule of three, and applications to many
commercial questions. There are also fancy and puzzle

questions and the rule of false. At the end there is a

geometry.

In the original edition of 1489 the leaves are not numbered,

and only the first page of each sheet has a signature. I shall

therefore follow Boncompagni in referring to this edition by
leaf and page. The book contains 236 leaves: in numbering
them, that containing the title page is taken to be the first.

The connection between the pages and signatures is as follows:

9, b; 17, c; 25, d; 34, e; 42, f; 50, g; 58, h; 66, i; 74, k;

82,1; 90, m; 98, n; 106, o; 114, p ; 122, q; 130, r; 138, s;

146, t; 154, v; 162, x; 170, y; 178, z; 186, A; 194, B;
202, C; 210, D; 218, E; 226, F; 234, G. In referring to

pages 1 denote the recto of a leaf simply by its leaf number
and the verso by this number accented; thus p. 87 denotes

the recto of f. 87 and p. 87' denotes the verso of f. 87. f hi

the editions of 1500 and 1508 the leaves are numbered.

* Widtnan's Rechenung and its various editions are the subject of a compre-
hensive paper by Boncompagni, entitled "Intorno ad un tiattato d'aritmetica di

Giovanni Widinann di Eger" in vol. ix of ids Birfltttino di Bibliografia e di storia

(pp. 188-210); Boncompagni does not mention the edition of 15u0. An account

of the contents of Widman's book is given by Unger, pp. 40-42, and by Cantor,

vol. ii., pp. 228-236.

f This method of distinguishing between recto and verso is followed also

throughout this paper in referring to other books, whether the leaf is denoted by
its number or by its signature and number, eg. E vi denotes the recto of the leaf

E vi, and E vi' its verso.

B2
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§9. The sign + first occurs in the question*: " Als in

diese exepel 16 ellii pro 9 fl £ vfi \+\ eynss fl wy kume
36 ellH machss alsso Addir \ vti \ vii \ zu samen kumpt |-£

eynss fl Nu secz vn machss nach der regl vii kume 22 fl g
J

5
eynsz fl dz ist gerad 3 fair in goldf ".

Here the question is: "If 16 ells are bought for 9 florins

and l and \ and \ of a florin what will 36 ells cost?" He
adds J and \ and } obtaining f£: thus 16 ells cost 9| fl and

therefore the cost of 36 ells is given by finding the fourth

proportional to 16, 5
6
8
g
7

, 36, which is 22<L fl or 22 fl 3 heller,

as stated by Widman. In this question + is clearly a mis-

print, or is due to a slip in writing, and its occurrence is

unintentional. This is evident from the use of vii in its place

immediately afterwards!. It will be seen that the question is

an exercise in the treatment of fractions and the use of the

rule of three.

§ 10. Widman's next question§ is: " Itiii 9 ellT^ pro 6 fl

\ eynss fl vnd \ eynss drittn vo f von eyne halbii dritten

eynsz fl wie kummen 11 ellii * machss alszo wart was ^
dritten sey das ist \ Darnach wart wass

f-
von \ sey das ist

\ Nu addir I vnd \ vnd \ zusamen vnd kumpt § vnd secz also

£ x - ~— Machss nach der Kegel vnd kttpt 8fl 3ss 9helr TV'.
1 8 — 8

The solution of this question shows that 'vo' which pre-

cedes | is a misprint for 'vii'. In the question 9 ells cost

6 florins and £ of a florin and | of 7i of a florin and f of

i of I
of a florin : that is, they cost 6 florins and £ and * and

1 of a florin, which is 6| florin. Thus the first three terms of

the proportion are 9,
5^, 8

/, so that the result is
4
5
7
f
l
6
7 florins

which, as Widman states, is 8 fl 3 ss 9 {\ hlr.

* Widman, p. 87. For the word pro Widman here and elsewhere uses the

customary abbreviation of a p with the lower part of the loop extended across the

stem. Widman's abbreviation for florins, which I write as fl, was, I think, merely

intended to be an f, followed by a loop or flourish. Similarly I shall write ct for

centners and gr for groschen, although I think the marks used by Widman and

others were merely meant for c and g, followed by a loop or flourish, and that it

would here have been more consistent if I had represented the abbreviations by

fe, ce, ge, or fo, g/u, go. Widman follows the general custom of the time in

writing the fractions after the denomination, e.g. 9 fl i instead of 9$ fl. In general,

I shall place the fraction before the denomination, except when 1 am quoting the

actual words.

t In ' gold reckoning' a florin is 20 shillings and a shilling is 12 heller. These

denominations are denoted by fl, ss, hlr.

X De Morgan's comment, in quoting this first occurrence of +, is :
" Here the +

is probably a sign to which the writer was accustomed, but which he did not then

intend to print, since unci occurs both before and after" {Cumb. Phil. Trans., vol.

xi., p. 205).

§ Widman, p. 87.
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Here as before the quest-ion is an exercise in the treatment

effractions and the rule of three, and W idman uses 'vnd' for

addition.

Widman's question {on jigs) in which + and — are

first used, §11.

§ 11. His next question, which relates to the purchase

of barrels of figs, is the one in which + and — are used and
their meaning defined. This question is as follows:*

" Veygen.

"Itin Eyner kaufft 13 lagel veygen vii nympt ye 1 ct

pro 4 fl i ort Vnd wigt itliche lagel als dan hye nochuolget.

vii ich wolt wissen was an der sum brecht

Czentner

4+ 5
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A nearly literal translation is as follows. " A person buys

13 barrels of figs and receives 1 centner for 4* florins, and the

weight of each barrel is as follows: 4 ct + 5 lb, 4 ct — 17 lb,

Set + 36 lb, 4 ct — 19 lb, 3ct + 44lb, 3ct + 22lb, 3ct-Hlb,
3ct + 50lb, 4ct — 16 lb, 3 ct + 44 lb, 3 ct + 29 lb, 3ct- 12 lb,

3 ct + 9 lb ; and I would know what they cost. To know this

and the like, sum the ct and lb and what is — , that is minus,

set aside, and they become 4539 lb (if you bring the centners

to lb and thereto add the +, that is more) and 75 minus.

Now you must subtract for the wood 24 lb for each barrel

and 13 times 24 is 312 to which you add the — , that is 75 lb

and it becomes 387 which subtract from 4539 and there

remains 4152 lb. Now say 100 lb that is 1 ct for 4* fl, what

do 4152 lb come to, and they come to 171 fl 5 ss 4| hlr which

is right".

The sentence in which the signs are explained may be

paraphrased as follows. Add the ct and lb, setting^ aside the

]b which have — , which is minus, and the result is 4539 lb

(when you have converted the ct into lb and added the lb

which have +, which is more), and there are 75 lb minus.

De Morgan's ' warehouse ' theory of the origin

of the signs, § 12.

§ 12. De Morgan was led by this question to suggest that

the signs + and — came 'to the arithmetician from the ware-

house', and this opinion was confirmed by two other questions

(relating to pepper and soap) which he quotes and which will

be referred to in §§16 and 18. De Morgan's words are "The

chests are weighed by centners of 100 lb. each, and the run of

the chests being from 3 to 4 centners, the obvious plan is to

put three or four centners into the scale of the weights, and

make the balance by pounds in that scale, or in the scale of the

goods, as wanted. The first chest wants more, and is 4c. bib:

the second wants less, and is 4 c. all but 17 lb. It will fully

appear that + and — are plus and minus, from which addition

and subtraction follow by inference. This presentation of

data is not the doing of the arithmetician, as such: it seems

to be served up direct from the warehouse. It may be

suspected that the nearest number of centners would be

placed in the scale by guess, and separate record would

* In a paper attached to De Morgan's copy of Widman's Rechtnnng, now in the

library of the University of London, he has written in reference to this question ;

"On 85 is the problem from the statement of which I derived the suspicion that +
and - were originally marks used in the warehouse to denote overplus or under

minus of weight. A. De Morgan, Nov 1 ' 20, lSGi ". (lioncompagni's BulUitino,

vol. ix.. p. 191).
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be made of the overplus or underminus— if this last word
may be allowed. Jt may be suspected that + and — were
warehouse marks, annexed to the entry of the weights for

distinction, perhaps painted or chalked on the chests".*

Views of Drobisch, Gerhardt, &c, §§ 13—15.

§ 13. Drobischt, who was the first to point out the occurrence

of the signs + and — in Widinan, says that he uses them in

passing as it they were sufficiently known, merely remarking
" was — ist das ist minus vnd das + das ist mer ".

Gerhardt considered that the signs + and — were derived

from mercantile practice, where they were in general use, and
he says that in VVidman their application is isolated and not

general:):.

Treutlein did not express an opinion on the origin of the

signs, merely accepting Drobisch's inference that they were
already known in Widman's time§.

§ 14. Thus both De Morgan and Gerhardt were of opinion

that Widman's Rechenung indicated a commercial origin of

the signs, De Morgan making the definite suggestion that

they arose in the warehouse and passed directly to arithmetic

as data, while Gerhardt considered that Widman's use of them
was restricted.

* Camb. Phil. Trans., vol. xi., p. 206.

t "Multo magis vero iuvat annotate, apud Widmannnm nostrum primnm non
solum inter Germanos, sed inter omne< gentes signorum additionis et subtractionis

+ et - plus el minus usum observari. Sed utitur iiss praetereundo, quasi de re iani

satis nota loquerel ur, dicens :
' was — ist das ist minus vnd das + das ist mer

(De . . . Widmanni . . . compendio, p. 20).

% Gerliardt, besides the paper referred to in § 1 (which relates to the history of
algebra in Italy), contributed two papers to the Berlin Academy in 1807 and 1870,
in which the signs + and — are referred to, and he subsequently published his
"Geschichte der Mathetnatik in Deutschland" (Munich, 1877). The following are
the passages which relate to the origin of the signs :

"Die Zeichen + und — (deren Ursprung nach meinem Dafiirhalten ana der
kaufmannischen Praxis herzuleiten ist) finden sich zuerst in dem Rechenbuch des
Job. Widmann von Eger, das im Jahre 1489 zu Leipzig erschien, aber sie kornmen
dnrin nur vereinzelt, nicht iiberall zur Anwendung" (Monalsberichte der Berl.

Akad.fur 1867, p. 53).
" Als ein besonderer Vorzug von Widman's Rechenbuch muss noch hervorge-

hoben werden, dass in demselben zum ersten Mai die Zeichen + und — vorkommen;
die Art und Weise der Einfuhrung scheint darauf hinzudeuten, dass diese Zeichen
im kaufmannischen Verkehr iiblich vvaren " (Ge<ch. der Math., p. 36).

§ Ztitschr
.
J'iir Math u. Vhya., vol. xxiv., .Supp. p. 29. Drobisch had mentioned

that Peurbach, in explaining the rule of false, had spoken of signs of addition and
subtraction, but he considered that they were not + and — but rtterely signs which
were left to the reader. Treutlein took the contrary view, and thought that they
did refer to + and — , and he found a confirmation of this belief in their

occurrence in a manuscript described by Gerhardt in the Monatsber. der Berl Akud.
for 1870 (p. 143), which was then believed to be of the 1 5th century, but which has
since been shown to belong to the 16th century, and therefore to be subsequent to

Widman's book (Cantor, (Jesch. der Math., vol. ii., 2nd ed. p. 210).
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In order to decide to what extent these views are justified

it is necessary to examine not only the way in which the

signs first arise (in the question about the figs), but also their

use and mode of treatment in all the other questions in which
they occur.

§ 15. In connection witli the question about the figs (§ 11)

the following points seem to me to be worth attention.

(1) The wording of the question distinctly suggests that the

weights arise in the forms 4 ct + 5 lb, &c, as the result of the

weighings, but of course there is nothing to show that + and
— were the actual marks used for plus and minus in the

weighing-room. (2) Although the signs are used in the

list of weights before they are defined, their meaning is

explained immediately afterwards at the beginning of the

solution. (3) The subtraction of 24 lb for the weight of the

wood in each barrel, though really part of the question,

is only mentioned in the course, of the solution, so that there is

little significance in + and — being used before they are

explained. (4) Widman treats the weights algebraically, i.e.,

he adds all the plus terms and all the minus terms instead of

rinding by addition or subtraction the weight of each barrel,

and then adding these weights. It is also noticeable that he
treats the weight of the wood of the barrels as a minus
quantity, adding it to the minus sum which had already been
obtained.

Other questions of Widmaii's in ivhich + and — occur

in the data, §§ 16-20.

§ 16. The example which immediately follows the fig

question relates to pepper, and is as follows.

" Pheffer

:

" Ithl 1 sack pfeffer wigt 2 ct \ — lb* vli ist lib kaufft

worde pro 8 ss — 3 hlr vli sol fur den sack abschlahn 3 lb + |
was kost das alles Machss alsso subtrahir die 9 lb vnd 3 lb %
von 250 pleyben 237 lb £ Darnach subtrahir auch 3 hlr von
8 ss pleybn 93 hlr Nu secz also 1 lb pro 93 hlr wie 237 lb £
machss nach der Kegel szo kummen 91 fl 18 ss 8 hlr j &c".

Here the sack of pepper weighs 2.] ct — 9 lb and 1 lb of

pepper costs 8 ss — 3 hlr and 3 lb + | is to be subtracted for

the sack. To find the cost of the pepper Widman subtracts

* Widman, p. 88'. The weight '2cti-lb' should be '2cti-91b'. It is

correctly printed in the editions of 1500 and 1508. The heading is given as

'Pfeffer' (not 'Pheffer') in these editions.
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9 lbs and 3| lbs from 250 lbs, leaving 237| lbs; he subtracts

3 Iilr from 8 ss, leaving 93 hlr, and as 1 lb of pepper costs

93lilr, therefore 237^ lbs cost 91 fl 18 ss 8^ hlr.

In this question the sign — is used in expressing not only

the weight but the money. The sign — in connection with

money could not arise in the warehouse, for even if the 3 hlr

were a rebate of some kind on the 8 ss it would be a matter

that concerned the accounts in the office and not the procedure

in the warehouse.

The introduction of + in the weight 3 lb 4- f was un-
necessary, but Widman may have wished to display its use in

connection with —

.

§ 17. I now give some account of all the other questions

in which + and — are used. There are a good many
questions in which they do not occur: these I pass over,

confining myself to those in which Widman uses either + or

— or both.

In the next two questions of this class, which relate to

saffron and grapes, signs are used only in connection with

money.
In the first of these questions* a man buys 10 ct 11 lb of

saffron for 2360tl, and sells it for 3fl-^ ortf the lb, after paying

94^ fl for expenses. How much does he gain or lose? This
is solved as follows. Adding 94^ fl to 2360 fl we have 2454^
fl as the cost of lOct 11 lbs, so that lib has cost 2 fl 8 ss

6 rb
7
ri hl't- Subtracting this from 3fl— }, the difference is

8 ss HfYix hh\ which is what he gains on each lb. Here in

the working 3 fl — -*- is in effect replaced by 2 fl 17 ss 6 hlr.

In the second question§ a man buys 4 barrels of grapes

weighing 9 ct 12 lbs, and let costs 6 fl — 1 ort |. How
much does he pay? In this case Widman merely gives the

result 51 fl 6 ss. As an ort is \, 1 ort \ is \ and ^ of \, that

is |, and 6 fl- | fl is 5fl 12 ss 6 hlr, which is the cost of 100 lbs.

§ 18. The next two questions, relating to oil and soap,

are similar to the question about figs (§11) as regards the

* Widman, p. 92.

t In the edition of 1508 this is misprinted 3 fl h ort.

j There is an error in the working, Widman giving this quantity as

2fl8ps6hlr flfft.
He then proceeds: "Nu subtrahir von 3fl-£ orth macht

das er an eyne I'o gwint 8 ss 1 1 hlr
1

"- ,

1

'', eynsz hlr Nu sprich 1 lb giebt mir gwinss

8 ss II heller M?j Was gebe mir 10 ct 11 lb machss nach der Regel so kumpt das

tacit". In the editions of 1500 and 1508 the values of the fractions are given

correctly, but in all the editions 101 1 is sometimes printed 1101.

§ W idman, p. 93. In the editions of 1500 and 150S the cost is given as ' U fl -
anderhalb ort' : andeihalb is 1J.
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expression of the data, i.e. the gross weights are given in

centners and pounds, connected by the signs + and —

.

In the first of these questions* a man buys three barrels of

oil, of which the weights are given as '2 ct 18 lbs',

'3ct — 32 lbs', ' 3ct + 5 lbs'. The wood amounts to 9 lb in

each centner, and the cost of the oil is 1 gr 9$f. How much
does he pay? Widman does not give the solution, but says

the question is to be solved in the same manner as the

question about figs, and he merely states the result J.

The sum of the centners and pounds with the + si^n is

823 lbs, from which 32 lb is to be subtracted, leaving 791 lb

as the weight of the three barrels of oil. From this 9 per cent.,

viz., 71]^ lb is to be subtracted, leaving 719$^ lb as the

weight of the oil, which at 21,9 the lb gives 59 fl 20 gr 8ro-Q#.

In this example the method used in the fig question cannot

be followed exactly, for the gross weight of the barrels of oil

must be obtained before the weight of the wood can be

calculated.

The next question§ is of the same kind. A man buys

four barrels of soap weighing 4ct-63lb, 3ct + 24lb, 3ct-2lb,

4 ct + 1 lb. The wood amounts to 12 lb in each centner, and

the soap costs 5 fl. 18ss 1 hlr the lb. Widman gives the result

as 70 fl 13 ss 2T
82^hlr, which is correct.

§ 19. In the remaining two questions of this class the

minus sign occurs in connection with money only.

The first
||

of these questions relates to cloves. A man
buys 278llbTT of cloves and stalks (fusti), of which 13 lb out of

every 100 lb are stalks. The cloves cost llss 3 hlr the lb, and
the stalks 2 SB— 3 hlr. How much does he pay? Widman's
solution is: As 100 lb produces 13 lb of stalks, therefore

27811b produce 361^ lb, and therefore there are 2419/,,
7
,,

II)

* Widman, p. 93.

+ 1 use 3 for the variant of d, which denotes 'pfennige'. The upper portion

is correctly represented by 3, but the lower portion should be bent round to form
a loop.

X
" Machss gleioher weiss alsz obn mit den veyge vn kumpt 50 fl f> gr 93 1 hlr $

".

This result is not correct : a florin is 21 groschen, a groschen 12 pfennigs, ana a
pfennig is two heller : the true result is that given in the text. I find that

Widman's result would be obtained if the wood in each centner were taken to be
10 lb instead of 9 lb In the edition of 1500 the money is expressed in florins,

shillings and heller, the price of the oil being 1 ss 'J hlr, and [lie result being given

as62fl 1 9 ss 8^ hlr, which is correct. In the edition of 1508 the weights of the

barrels are given as 2 ct 18 lb, 3 ct — 32 lb, and 4 ct + 5 lb, and the result is given
as 70 fl 13 sp 1

1-jij, hlr, which is correct.

§ Widman, p. »»'.
|| Id., p. 96.

II Misprinted 278. It is correctly printed in the editions of 1500 and 150S.
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of cloves, which at llss 3 Mr the lb come to 1360 fl 19ss A hlr,

and the 361^ lb of stalks at 21 lilr the lb come to 31 fl 12 ss

8
ryn hlr. Thus the total cost is 1392 fl 11 ss 8§§ hlr.

The other question* relates to various kinds of corals,

weighing 69|- lb, 59£ lb, 49| lb, 39£ lb, 29l lb, 19 lb, the
respective prices per lb of which are, in florins, 6 + |, 5 + 1,

4+i, 3 + |^, 3 — |^, 2 -f |f. The respective values are given
by Widman as 424 fl 13 ss 4 hlr, &c, the total amount being
1161 fl lss 5^ hlr.

§ 20. In only one of these eight questions (viz., that
relating to pepper) does the minus sign connect centners and
pounds as well as shillings and heller : in three (relating to

saffron, grapes, cloves and corals) it connects florins and
fractions of a florin, or shillings and heller. Among the
weights, those with the minus sign are 4ct— 17 lb, 4 ct— 19 lb,

3 ct — 11 lb, 4 ct — 16 lb, 3ct — 12 lb (figs), 2^ ct - 9 lb (pepper),

3 ct-32 lb (oil), 4 ct- 63 lb, 3 ct — 2 lb (soap). It will be
noticed that in one of these weights 2^et occurs, and that in

4ct — 63 lb, the lbs exceed half a centner.

In money the amounts which have the minus sign are
8 ss- 3 hlr (pepper), 3fl--|ort (saffron), 6 fl - 1 ort \ (grapes),

2 ss— 3 hlr (cloves), 3fl-|fl (corals). Thus the deductions
are 3 hlr, \ fl, | fl, 3 hlr, and £ fl. It is possible that these
deductions may have arisen from some kind of rebate, but
this seems unlikely, for in the question about cloves, the cloves
cost 11 ss 3 hlr, and the stalks 2ss — 3 hlr, and in the question
about corals, in five cases a fraction is added and in only one
is it subtracted, and then it is as large as f. It seems to me
much more probable that the + and — terms were introduced
merely as exercises in the use of these signs.

Oilier questions of Widman s in which + and — occur, § 21.

§ 21. I now proceed to consider the other questions in

which Widman uses the signs + and —

.

(1) The expression j? + § occurs in the solution of an
example^ in which wine at 5 fl is mixed with wine at 10 fl,

and the question is to determine the right proportion in order
that the mixture may be worth 7 fl. It is found that the
composition must be ij -f |, i.e. that there is to be j? of the

cheaper wine and \ of the dearer.

* Widman, p. 155.

t This is misprinted 2 + \. The fraction should be 4, as appears from the
result fjiveri, viz. 40 fl 7 ss 6 hlr. The correct fraction \ is given in the editions of
1500 and 1508.

J Widman, p. 109.



14 Dr. Glaisher, On the early history of the signs

(2) In a similar question*, where there are four wines

at 20,9, 15-9, 10-9, 8-9, and a mixture worth 12,9 is to be made.

The result is that 6 parts are to be taken ' vonn dem pro

20-9+15.9' (that is, of each of the two more expensive wines)

and 11 parts ' der geringern zweyer weyn '.

(3) A man buys 6 eggs - 2.9 for 4.9 + 1 egg. How much
does an egg cost?f The result is found to be 1^-9.

(4) The compound interest of 20 florins for 2 years is

30 florins. What is it for 1 year? The answer is given

as the square root of 600 - 20 ( die wurzel von 600 — 20 )$.

(5) In another question§ on interest 1 florin has produced

1 fl + 36.9, and the question is to And what would produce

50 fl. Here + merely adds pence to florins.

(6) In a geometrical question
||

in the third part of the

book, the radius of a circle inscribed in a right-angled triangle,

whose sides are 10 and 8, is given as '48 — 1^ von 164' {i.e.

18-V164).

(7) The expression 39-9 — 51 2-9 occurs in a questional on

alligation relating to coinage. The quantity 623§^ has to

be divided by 16 and the result is given in this form. There

seems no reason why it should be so given rather than in the

form 38§y§.9 (in which it appears in the edition of 1508).

Possibly Widmau obtained his result by writing the original

quantity in the form 624.9 — ^^'

(8) Six persons have to divide 20 florins in the following

proportions : the first is to have 1^ fl + ^, the second

2i A + h &n& tne otner f° ul' 1 A** each. The solution is,

* Widman, p. 109'._

t Id., p. 115. " ItFu eyner bat kaufft G eyer - 23 pro 43 + 1 ey". Borgi lias

a similar question (p. 115), " 5. poine e vn dauaro val 8 dni men vn pomo. adimando
che val el pomo". He solves it by the rule of false. More complicated questions

of the same kind are given by Paciolo, pp. 105, 11)5. Those on the latter page
are solved by algebra. / x •,

1 Id., p. 127'. If x be the interest for one year, then (20 + x) 1 + — )
= 30,

whence z = .JG00-- 20. V ~0/

§ «,p. 132. || Id., p. 217.

^[ Id., p. 165. In the edition of 1500 it is printed 393 sfj3.
** Id

, p. 195'. "Itm 6 gesellen teylen_20fi. Der erst sol haben Hfl + \ Der.

ander 2£fl + 4,. Vnd die andem 4 solln gleicli teil haben". The solution is

" Machss also Reducir dye teyl facit V + V die sumir fa. ^° addir die 4 gesellen

dar zu facit \%
G ist if/- • •

"

The meaning is that the 20 fl are to be divided in these proportions. This mode
of expression was general in Widman's time and continued for long afterwards,

e.g. if 20 was to be distributed among three persons so that the first had £, the
Becond i, and the third £ it was not meant that they were to receive these amounts,
but merely that the 20 was to be divided in these proportions. The procedure
was to take a number which contained the denominators, such as 12 ;

the amounts
then became G, 4, 3, of which the sum was 13, and the amounts to be received
were obtained as the fourth terms of the proportions 13: 20:: 6, 4, 3, and were
theiefore 9^, G,23 , if3 .
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the oy + y makes y^ , and adding 4 for the other four we have
a
2
°
4
6

, that is !
r
Q
2
3

, and " secz alsso

1^3-20 V ^ct 6 T̂ 5 ,

Here in each of the three cases + is used to add quantities of

the same denomination and — is used to separate the first two
terms in a proportion.

(9) Three persons have to divide 100 florins in the pro-

portions, I — £, ^ — ^, 5— ^. How much does each have?*
The solution is to take a number which is divisible by 12, 20,

30: say 1800. Then ^ of 1800 is 150, ^ of 1800 i s 90
>

and 3^ of 1800 is 60. The sum of these is 300. Then " secz

alsso

150 50,

300-100 90 facit 30,

60 20".

Here in the fractions — connects quantities of the same
denomination, and the subtraction can be at once effected

:

and in the proportions it is used to separate the first two

terms.

Other uses of+ and— by Widman, §§ 22—24.

§ 22. The — is also used to separate terms in a proportion

in two other questions. In these it separates the third and

fourth terms as well as the first and second, viz.

1910-32,

11630-198 4610-78,

5110-89f,

and 353-305 140 - 120§£j},$ &c.

§ 23. In the rule of false the position and its error are

placed in the same line, and the error has the + or — sign

* Widman, p 195'. " Itm drey gescllen teyleti 100 fl vn der erst sol liabrT ^ - $
vnd der ander der i-i Vnd der drit $~i ". Here also $-$, &c., merely are the

proportions in which the 100 fl are to be divided.

f Id., p 188. In tlie 1500 and 1508 editions the fractions are inserted, and the

third and fourth terms are 1910-32#&, 4610-78jSf%, 5110 — 8G{|g^- In the

1489 edition 4til0 is misprinted 4910.

% Id., p. 193'.
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prefixed according as it is in excess or defect. Thus the

position and its error are connected by the signs + and —

.

The examples* are

6+1 12 -2\)

X X
7 + Ht i«+ At-

§ 24. The mark — is used in another manner in a question

relating to wool§, in which 60 lbs are bought at 553 the lb,

50 lbs at 453, and 40 lbs at 353. In the solution of the

question 60— 55, 50- 45, 40— 35 occur, but the — here is used

merely to connect each amount of wool with its cost per lb.

Some uses oj' + and — by Widman: possible misprints,

§§ 25—26.

§ 25. As mentioned before (§ 9) the actual first appearance

of either + or — in Widman's book is in the expression

\ vn 4 + 5H. The + may be merely a misprint; or, as De
Morgan suggests, Widman may have been in the habit of

using + in writing, and this + may have crept into print

accidentally ; or he may have used an abbreviation for ' and '

in writing, which the printer expanded into vnd or vn, and
which in this case he mistook for +.

The sign + occurs in the heading ' Kegula augmenti +
decrementi 'H. I think that the + is simply a misprint and

* The first, question is in effect : A mark of one alloy contains 12 lots of silver,

and a mark of another alloy contains 15 lots of silver (there are 16 lots in a mark).
How are they to be combined so that a mark of the composition may contain 13

lots? If 6 lots of the first are taken and 10 of the second, the mark so found
contains 13f lots of silver, and if 7 lots of the first and 9 of the second are taken,

the mark contains 13 J^ lots, whence the statement in the text which gives lOf of

the first alloy and 5^ of the second. In the second question, a person has bought
ginger at 5 lb for the florin and pepper at 8 lb the florin. How many pounds of

ginger and pepper, in equal quantities, have cost him 2 florins? 'taking 12 1b

(i.e. 6 lb of ginger and 6 lb or pepper) he finds that these have cost \i$ fl, and
taking 13 lb the cost is 2~^ fl, whence the statement in the text giving the result

12* lb.

t Widman, p. 201'. J Id., p. 202'. § Id., p. 103'.

||
Id., p. 87. In the 1500 edition the + is omitted apparently by accident : it

occurs in the 1508 edition.

*|[ Id-, p. 112. The + occurs also in the editions of 1500 and 1508, but is replaced
by et in the Table of Contents at the end of these editions. De Morgan's comment
is " The heading Kegula augmenti + decrementi is probably a sort of joke, a use
of + for logical aggregation : the regula augmenti alone is just before" (I.e. p. 207).

Whatever its exact meaning, this comment shows that De Morgan regarded
\Vidmaifs use of + as intentional Tropfke clearly regarded the use of the + sign
in '

J vE i+-J' and in 'augmenti + decrementi' as intentional, for he says that
the former expression shows that Widman varies at will + and 'und', and the
latter shows that he could use + when addition was not meant. "Es wechsclt
hier das Zeichen + beliebig mit dem wort 'und' . . . Ja das Pluszeichen erscheint
alien da, wo gar keine addition vorliegt" (Geschichtt dtr elemeutar-mathematik,
vol. i., p. 181). [It may be noted that Tropfke quotas "J fl i und \+± schilling'
from Widman instead of '9fl > vn J + -J

eynss fl
'.

j

Widman's explanation of the 'Regula augmenti + decrementi' is "In dieser
Kegel soltu dich alszo hulten Subtrahir die kleyner zal von der grossern Vnd das
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thai the word should be et. Here again the abbreviation

that Widman used for 'and' may have been mistaken for +.

The — which occurs in 197 —^ is clearly a misprint, the true

value being 197|f*.
It is possible also that the + in § + § and 20^+153 in

(1) and (2) of § 21 may be misprints.

§ 26. The first example of the ' Regula augmenti -\ de-

crement ' is: A man buys a sack of aniseed: if he pays 12$

a pound he has 373 left: if he pays 183 a pound he is 143

short : how much does the sack weigh, and how much money
has he? The solution is "subtrahir 12 von 15 bleyben 3 vnd

das ist der teyler darnach addir -f vnd - zcusam wirt 8 ",

which gives 27 lbs as the weight of the sack. Here, as in

vberige teyl. mifc der minnerung vnd merung zusam geaddiret vli der selbigen

teylung quocient saget dyr zal...". It seems clear that the 'minnerung' and
'meiung' are the ' decrementuui ' and ' augmentum ', and as these are added

togethet the use of -4- in the heading has some justification. The previous rule

was the 'Regula Augmenti' which is thus described: "Subtrahir die kleyner

anzal vonn der grossern vnd das vberig behalt zu deine teyler. Darnach subtrahir

auch dz kleyner residua von dem grossern. vnd das vberig geteylt durch deyne
vorbehalten teyler bericht die frag des gewichtes ader des gleichen...". The
example is: if a man buys 9 lbs he has 13 gr left; if he buys 11 lbs he has 1 gr

left: how much did lib cost, and how many groschen had he? Here the 9 is

subtracted from the 14 to give the .di visor, and 1 is subtracted from 13 to give the

dividend. The 'augmentnm ' is apparently the amount of money left over, called

'residuum' in the explanation. The next 'rule' after the Regula augmenti et

decrementi is tl>e 'Regula plurkna', and the first question under it is: "Three
articles cost as much more than 43 as four cost more than 10v ".

I do not know to what extent the numerous headings in the Rechennng were

taken from previous writers, but it seems likely that some of them were due to

"Widman himself. They do not occur in Borgi or Paciolo. Questions of the same
kind as those in the 'Regula augmenti + decrementi' are given on p. 104 of

Paciolo,where they aie included under the ruleof false. They have no special heading.

The name ' Regula augmenti et diminutionis' was early assigned to the rule of

false, for Leonardo Pisano in chapter 13 of his Liber Ablxtci (' de regulis elchatayn,

qnaliter per ipsam fere omnes questiones abaci soluuntnr') writes "Est enim
alius modus elchataym.; qui regula augmenti, et diminucionis appellator, in quo
ponuntur errores sub posicionihus suis" [Scritti di Leonardo Pisano, by B.

Honcompagni, vol. i., Rome, 1857, p. 319); and an earlier Latin MS. on the rule

of false printed by Libri in vol. i., pp. 304-376, of his Histoire des sciences math,

en Italie has the title "Liber augmenti et dimimvtionis voratus numeiatio divina-

tionis. ..quern Abraham compilavit..." (on this MS. see Cantor, vol i
, p 627). It

does not contain any question of the same kind as Widman's A planus, writing

in 1527 (see 10° of §42), begins his account of the rule of false " lJise regel wirdt

von etlichen augmenti vu decrementi auch zii zeiten Regula positioimm gennndt".
The only other work in which I have found the headings ' Regula augmenti ' and
'Regula augmenti et decrementi' with examples of the same kind as Widman's
is the "Arithmetioe Liliu Triplicis practice quaiu pulcherrimaj..." The copy I

possess, which is the only one 1 know of. is incomplete, ending with the leaf K iii,

and as there is no author's name on the title-page, and the colophon page is missing,

I can only sugges*" Cologne as a probable place of printing, and c. 1610 as the date.

The example under the first heading is : if a person buys 8 lbs of pepper he lias

20 fl left, and if lie buys 8 lbs he has 12 fl left : what is the cost of I lb ? And the

example under the second heading is : if a person pays 24 fl for each load of wine
lie has 52 fl left, and if he pays 30 fl for each load he is 80 fl short: how many loads

did he buy and what was the cost of a load?
* Widman, p. 107. The misprint is repeated in the editions of 1500 and 1508.

VOL. LI. C
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the question relating to figs (§11), + and — mean the terras

which have these signs, and the use + and — in this sense is

noticeable as the signs do not occur in the statement of the

question. To obtain the amount of money Widman multiplies

12 by 27 and adds 37, or multiplies 15 by 27 and subtracts 44.*

In the next example it a man pays his workmen 5$ each

lie has 11,9 over and if he pays 9$ he is 173 short.

In the question of the eggs (No. 3 of § 21) the use of the

signs is reversed., i.e. they occur in the question, but not in

the solution. This example is " Itiu eyner hat kaufft G Eyer
— 2.9 pro 4$ + 1 ey ", and the solution is " Addir dy gemyn-
dertu 2.9 zu 4.9 werdn 6.9 vnd dz ist der zeler. vnd darnach
Addir audi die kleyner der eyer gemyndert zu der groSlen

irii gleichn Ader subtrahir das kleynst gemert von der grossern

ezal irss gleichn als 1 ey von 6 plevbn 5 vnd ist der nenner

des vorge fundi)en zelerss. vnd stet also § vnd so tewer kumpt
1 ey ". Here ' gemert T and 'gemyndert

r
seem to represent

+ and — and the rules are equivalent to ""Add —1 to 6 or

subtract -f 1 from 6".f

A distribution question of Widman s, §§27-28.

§ 27. Another example^ of Widraan's should be noticed

because he uses the word mer when we might have expected

-f-. The question is to divide 384fl among 4 persons so that the

iirst is to have -jj and 6 more (| vnnd 6 mer), the second | and
8 more, the third ^ and 10 more, the fourth £ and 6 more.

Widman's solution is to find § a number which contains all the

denominators of the fractions; he takes 360, of which §, 3, |,

§ are 240, 216, 300, 315: to these he adds 6, 8, 10, 6

respectively, giving 246, 224, 310, 321, their sum being 1101.

lie then forms proportions, which he writes as follows:

§ 6 mer 246 85 fl §§f,

§ 8 mer 224 78 fl 3%6r,

1101
'

Als Facit

f 10 mer 310 108fl 4̂
7 ,

£ 6 mer 321 111 fl |ff.

* The general rule for finding the amount of money when the weight of the
pack has been found is " weliohe zal [the number of lbs j

szo sy gemultiplicirt wirt

mit der kleynem anzal vii die grosser roynnenmg ve-n dem product subtrahirt wirt

Ader widerumb. das darnach vberpleybet bericht die andex frag"'. There is some
confusion in this rule, for the number of lbs should be multiplied by the greater

number if the ' mynnerung ' is to be subtracted. In the example the rule is

applied correctly.

t Widman, p. 115. 'Ibis rule, which lias the heading ' Regula pulchra', follows

immediately the. ' Regula pluiima' mentioned in the second note to § 25.

j id.. ],. i 96'.

$ " Find evn zal dar yn du die gebroclien alle habst Vn ist 3G0 Mym 3 von 3GO
ist 210 vnd :

l von 300 ist 216..."^
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This solution implies that Widman regarded the shares of the

four persons as proportional to §A. + 6, 5A.+-8, |A.+ 10, £A.-f 6,

X being an arbitrary number which may be chosen at con-

venience, and he takes 360, but of course he might as well

liave taken 120, 240 ... or indeed any other number*.
Thus the question as Widman interprets it is indeterminate.

To render it determinate we must suppose that after the

persons have received 6, 8, 10, 6 respectively, the residue

{i.e. 354 fl) is to be divided among them in the proportions

ot |, 2, |-, I-,
J n this case the amounts which they receive

are 85^ fl, 79^11, KWtffct, HO^fl-f

§ 28. It is interesting that Widman should have written

imer instead of using +, for I do not. think he would have
scrupled to write 3 + 6, meaning | of some quantity -f- G fl.

It is likely that he took the question from some earlier

writer, and left it unchanged. If he had examined the

question, he would have remarked the ambiguity. $

Widman s general use of -\- and — : criticism of Be Morgan's
' toarehouse'

1

theory, §§ 29—31.

§ 29. I think these examples show that Widman used the

signs -t- and — in all the ways in which they are used in

algebra, that is to say, they connect by addition and subtraction

* Putting X = 120/1', the portions received by the four persons are

128(80i- + fi) 128 (72fc + 8) 128(100/!:+ 10) 128 (1 051; + 6)

119/fc+ 30 ' il'J/t + oU ' Jiy/j + 30 ' JL19/fc+ 3U '

Widman's solution corresponds to Jt = 3.

t Paciolo gives questions of this kind and solves them correctly (i.e. he so
interprets them that they have but one solution) : lie connects the fraction and the
absolute number by p (pin), and he also gives questions in which they are connected
by m (meno) Thus No. 4 on p. 160 is

' ; Doi guadagna 100. al p°. tocca la mita.

p. 5. al secodo. el. j. p. 4."; the question is equivalent to dividing '.) I in the pro-

portion of A. to J, i.e. one has f, and the other |, of 91. The next question is to

divide 100 "el p°. die hauer la mita. p, 3. el secodo el. jin. 5". Here 102 is to

be divided in the proportion of 3 to 2.

In the A rithmetice L'dium (mentioned on p. 17 in the second note to §25), in

which the author seems to follow Widman closely, there is a similar example which
is solved in the same manner. The question is to divide lOOffl among three persons

so that the first has A and 3 fl ('A et 3 aureos'), the second £ and 2 fl, and the third

I and 4 fl. A number containing all the denominators is taken, viz. 30, and. the

three shares being then represented by 18, 12, 10, their values are obtained as the

fourth proportionals to 40, 100, and 18, 12, 10, and are found to be 45, 30, 25.

The heading of the example in the Lilium is ' Itegula Divisionis ', \\ idman's
example being placed under 'Teylung'. The first satisfactory solution of such a
question which I have noted is in Rudolff's Kuntnliche Recknung (8° of §42),
where the share* are ' A vnnd 6 fl ',

;

^ vnd 1 fl ', and ' \ minus 2 fl '. See §§ 51, 61.

X Drobiseh, referring to W idman's Geometry, wrote " lam vera luculentec

apparel, in his Widmannum nostrum tantummodo compilatorum fuisse. Nam
clausis quasi oculis falsis agiimensorum Romanorum regulis utitur, quanqunm
ipse in antecedentibws alia, eaque, certe ex parte, rectiora docuerit" (j)e...Wid~

manni...compendio, p. 32). This remark seems to me to apply alsy to some of the

regulse and problems iu the Arithmetic.
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quantities of different denominations and kinds such as centners

and lbs, shillings and heller, eg^s a»d pence, rational and

irrational quantities, and quantities of the same kind, such

as I and
J, H A and \ fl, &c. They are also used, in the

rule of false, to denote excess and deficiency*.

De Morgan wrotef: "In favour of the warehouse theory-

it may be added that VVidman is very chary of the use of the

signs + and — throughout the part of his work which treats

of fancy problems or of the higher rules of commerce : it may
be that he was little accustomed to the signs except in the

class of problems in which they reached him as data '*.

Gerhard t stated that they occurred in an isolated manner

and not as- having a general application, and Eugene Smith

(probably following De Morgan) says that they "are not used,

however, as signs of operation, but as symbols of excess or

deficiency in warehouse measures "4

§ 30. I disagree with all these com(nents.§ The natural

inference from the book seems to me to be that Widman was

accustomed to denote plus and minus by + and — in algebra,

and that when he came to write a mercantile arithmetic

he used the signs he was familiar with.
.
I should also

have thought it likely that the signs were already known,

but this does not. appear to have been the ease||. Whether

* Stifel in the Arithmetica Integra (15-14) describes the use of the signs + and —
as primarily to connect quantities, the proportions of which could not be exactly

given (such as irrationals), and quantities of which the proportion is unknown (as

when one is an unknown), but adds that besides this double necessity they are

used whenever it is convenient ("Primo enina ntioiur illis in nnmeris talibiw,

quorum proportio prsecise dari non potest: ut in nnmeris irrationalibus. Pecundo

utimur eis in numeiis talibus, quorum proportio ignota est, & si prsecisa sit: ut in

numeris cossicis, dum nuraevoa quaerimus nobis absconditos. Sed praeter necessi-

tate h-uic dujilieem, utimur eis commoditatis gratia, ut aliquid per ea monstremus

aut doceamns", p. 248'). 'these words seem to me to express accurately the uses

of + and — . They are essential when the quantities are to be added, or subtracted

the one from the other, and the addition and subtraction cannot be performed, and

it is convenient to use them in many other cases,

t he cit., p. -2(19.

J Rura Arithmetica, p. 39.

| Tropfke takes the same view as I do (and is therefore opposed to those of De

Morgan and Gerhard t) with regard to Widman's general use of the signs, for he says

that though their employment in the fig question &ive* the impression of mercantile

practice, still his collective treatment of them enables us to recognise "his skill in

calculating with thesigns,the free use of which in other different problems shows that

to him + was not merely a word no* was it, in connection with -, merely a mercantile

mark, but that both signs were already to him genuine symbols". (" Die Verwen-

dung dor Zeichen + und - macht in den bier aufgestellten Rechnnngen dea

Ifliudruck, ala ob sie aua dei kanfiniinnischen Praxis hervorgegangeii seien. . . .

Hi- Zusaminenzieben einer ganzen Reilie soldier Ausdriicke laastdie Geschicklich-

keit Widmann'u erkennen, mit diesen Zeichen zu rechnen : dei freie Qebranch Lb

verschiedenen anderen Aufgaben verrat geradezu, da*a ihm das + nicht mehr einea

Woitersatz, oder, in Gemeinachaft mit <lem -, nur eine kaufmauniscbe Signatnr

It, BOiideni beide Zeichen ihm bereits wirkliche Symbole geworden sind".

Ceschichte, vol. L, p. 181

U See, however, Part III. of this paper.
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Widmati derived i- and — from the warehouse or from some

other source, he used them freely, and it seems to me not

•unlikely that some of his questions may have been specially

devised to exhibit their use.

§ 31. The * warehouse theory' of the origin of the signs

-f- and - may have two distinct, meanings: it may mean (i)

that the warehousemen used these signs and the arithmeticians

(or algebraists) did not, so that in writing a mercantile arith-

metic Widman used the signs that, his readers would understand,

and that the warehouse signs thus passed into arithmetic; or

(ii) that Widman, desiring to replace plus and minus, or more

and less, by symbols, derived + «ud - from the warehouse

and not from abbreviations in writing.

The first view is clearly that which was held by De Morgan.*

The points in its favour are (i) that the signs first appear in

a, commercial arithmetic, the title of W idman's book being

"Behede vnd hubsche Rechenung aufF alien kaufFmanschafft",

and (ii) that their meaning is explained very briefly, and that

they first occur in the statement of the weights (§ 11).

The second point seems unimportant, as the interval

between the use of the signs in the weights and the expla-

nation of their meaning is so slight that they may be said to

be defined as soon as they are introduced; and in any case

such irregularities are not uncommon in all early books f.

* Ih a letter (on tlie history of + and -) to The Athenasum (published in the

number for Oct. 29, 1 80-4, p. 56.5) De Morgan explained the warehouse theory even

more fully than in his paper quoted in §12: "Suppose a warehouse in which
bales are frequently weighed which are usually something over or under 1500 pounds.

Three -weights would be put into tlte scale of 100 pounds each ; and each bale would
then require more weights in one scale or the other. Thus a bale of 325 pounds
•would take 25 pounds in the scale of the weights; one of 288 pounds would take

12 pounds in the scale of the goods. In weighing bale after bale, and milking

entries, it is probable that tlie whole result would not be formed at once, but, '25

more ', or, ' 12 less ', would be entered in a warehouse-book, or chalked or painted on

t
the bales themselves. Some signs might be used instead of move or less : and -+-

for more and — for less might suggest themselves. In this case, when the entries

came to be fully made, 300 + 25 and 300-12 might easily take their place in a

column". He then says that this is not conjecture, " for 1 have found in an old

work of commercial arithmetic, which I shall have occasion to describe when 1

'collect my notes on the subject, a question proposed and solved, which shows that

•the preceding use of 4- and — was made before 14&9, and that it was not thought

necessary to explain to the reader what + and — stood for. The explanation above
given is certainly implied in the question and solution, and its absence shows that

the question would be understood without it by the readers ior whom the book
was intended ". De Morgan is not correct in saying that Widman does noL explain

what + and — stanl for.

f Drobi.sch thought that Widman 's mode of using + and - showed that they

were sufficiently well known (§ 13), but the fact that their meanings are explained

affords some evidence to the contrary. Even when a word or si^u could clearly

not have been known, Widman does not feel obliged to explain it, for in the

geometrical part of this book he uses the word cofisu and its cossic symbol withou
any explanation (see §31) ; nor does he explain the meaning of the connecting

lines x and = in the rule of three.

C2
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But the manner in which tlie signs first occur certainly gives

the impression that they are not complete novelties, and
suggests that they may have been employed as marks of

excess and defect by warehousemen in the manner described!

hy De Morgan. Widman being aware of this may have
adopted them as convenient symbols for plus and minus, but,

whether this was the case or whether he derived them from
other sources, we should expect him as an algebraist to use

them as plus and minus are used in algebra. This he does,

and he seems to me to have even done more, and to have
invented questions to show the use of the signs and how they
are to be treated. Thus in the question about pepper which
follows immediately after the question about figs, in whicli

centners and pounds are connected by the signs + and -, he
connects shillings and heller by the sign — . I do not think
such an example would have arisen naturally, and it seems
not unlikely that Widman may have devised this question and
some others in order to illustrate the use of the signs and the

manner of treating minus quantities.

I cannot agree with De Morgan's remark that Widman
may have been "little accustomed to the signs except in the

class of problems in which they reached him as data",
for they could not have been data in questions relating to

money, and how could the prices 6 +
-J, 5+ J, 4 + *, 3 + |,

3 — f, 2+ J (in florins) have arisen as data? The questions
which De Morgan describes as 'fancy problems' were mainly
those that were taken from earlier writings, as several of them
occur in the early Italian arithmetics*.

The use of the cossic notation by Widman, §§ 32—37.

§ 32. That Widman was an algebraist is shown by his

own book, for in the third part, which relates to geometry, he
uses the words cosa and census and the cossic sign for cosa.

They occur in the solution of the problem of the inscription

of a square in a semicircle.

The problems and solutions are as follows :f
" Itin wiltu aber in eynen halben cirkel machen eyn

quadrat auff das grost. vn wilt wissen wie laug der sey tea
eyue sey Nu secz also oben der diameter des halben cirkelss

sey 12. vnd eynn lini die von oben herab perpeneulariter
gezogen wert sey 6 Darnach machss also multiplier den
diametru in sich selbst wirt 144 vn teylss durcli 5 kumen 2&*
vnd ljc von 28£ ist das quadrat durcli die seyten.

* Some of these questions are referred to in Part 111.

t Widman, p, '217'.
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" Het icli aber also gesproehen

Es ist eyu halb cirkel dess corda

von dem arco ist 12 vli sagitta

ist 6 dar eyn wil icli macliTT das

grost quadrat so icli mag Nu ist

die frag wie wil der bald cirkel

sey macliss also Nw du siclist das

die halb rotund gleieh ist dem
quadrat vud icli wil eynn andere

rotund bin eyu maelm vnnd wi(

die selbige rotund zueygen der

selbn halbeu vnd thu ym also Ich

macb eyn rotund byn eyn v
_

dar eyn maeb icli awe quadrat

also das eyner zwir so lagk sey als weyt als in dieser figur.

" Vnd darumb soliu secze dz voin a piss sum c sey eyn

cossa. vnd vom c zum b audi ey cossa. vnd also spricli dz eyu

quadrat weyt sey 1 cossa vnnd

langk 2 cossa Darnacb wart wie

gross eyn quadrat sey das do weyt

sey 1 cossa. Vnd zweyer langk.

mltiplicir lTt.durch 1^ wirt 1 ze*
9

vu [vli] multiplicir 211. durcb 27; .

werde 4 zes
8

addirss zusaminen

weru 5 2{. das ist vom a zum b vnd

audi vo c zum d auff das geneust.

Vil ist oben berurt das der

dyameter der rotud sey 12 dar-

umb quadrir 12 werden 144 dz

teyl durcb zes" als 5 so kume 28£ und szo vil ist die ra. das ist ra.

von 284 vnnd ist geseczt das. dz quadrat sey auff yder seyten

1 % Darumb ist eyn seyten I£ von 28^ und also hastu das

vberey kumpt % mit der andern regel ".

Tlie cossio symbol tor res or cosa, wbicb is bere denoted

by If. , is the abbreviation wbicb was used in manuscripts and

early printed books to denote the termination rum.

r»—

.

.—<S

§ 33. Widinan first gives the rule, viz. that if the diameter

of the semicircle is 12, then the side of the square is the square

root of 28£. He then proceeds to prove it. He completes

the circle by adding an equal semicircle below, and produces

a vertical side of the square to meet the lower semicircle in b.

His words are: "I make a circle and therein I make two

squares so that one is twice as long as wide as in the figure".

The meaning clearly is that the length (which is the side of

the larger square) is twice the width ac (which is the side of
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the smaller square). He then proceeds, using cossle words

and a cossio symbol

:

"You must suppose that from a to c is 1 cossa, and from

c to b is also 1 cossa, and say that a square is 1 cossa wide and

2 cossa long. How large will a square be that is 1 cossa wide

and [how large will one be] that is 2 cossa long? Multiply

17f by lit, which is 1 zensus, and multiply 2 If by 2 If,

which is 4 zensus, add together, they are 51; [obviously an

error for 5 zensus], that is from a to b and also from c to d.

exactly. And it is stated above that the diameter of the circle

is 12, square 12, it becomes 144, divide by zensus which is 5 it is

28+ and so much is the root : that is the root of 28|, and it has

been supposed that the square is on the side llf , therefore the

side is l\ of 28$, which is in accordance with the above rule'
7
.

The process is quite clear, ac is 1%, cb is 2 If , acb is a right

angle as ab is obviously a diameter, and therefore the squares

on 1 If and 2 If are equal to 144, therefore 5 zensus is equal to

144, and therefore 1 zensus is 28$. The statement that from

c to b is 1 cossa is clearly a slip: it should be 2 cossa. A para-

phrase of the sentence would be "form a square whose side is

1 cossa wide, and one whose side is 2 cossa long". Widman
uses the word 'wide' when in the figure the side is horizontal

and 'long' when it is vertical, i.e. as denoting the base and

cathetus of a right-angled triangle. When Widman says

fc divide by the zensus', meaning 'divide by the coefficient

of the zensus', he is following the practice of the time and of

long afterwards, when the direction to divide by a term meaus

that its numerical coefficient is to be the divisor.

§ 34. This solution establishes beyond question that Wid-

man was an algebraist, and was conversant with algebra when

he wrote his Beckenung* (although, as will be seen, there is

abundant independent evidence upon this point). It is also

* The manner in which Widman uses the signs 4- and - in the arithmetical

portion of the Rechenung seems throughout to show algebraical influence, so that

it is satisfactory to have the cossic notation actually used in the book. It is clear

that Widman's intention was to avoid algebra in his arithmetic, for in the dedication

he says that the old masters of the art have let themselves go astray in giving

perplexing and troublesome rules such as those of algebra or the Coss, the Data

(of Jordaiius], the rules of proportion, «Src, which are difficult, wearisome, and

incomprehensible to common people (" l)u hast betracht ynn dtinem gemute.

Dass die aide mevsterder kurist dcr Rechnug Irenn nach komende schwere Kegeln

tzuuornemen vfi muesam tnineifuren gelassen habenAlss do seynn die Kegel

Algobre ader Cosse genant dass buch. Data genant vn die Kegel propoilionu vnd

under der gleychen. Die do alle de getneyneui volck tzu schwer verdrossenn vnd

vnbegreyfrnch seyn". p. '2), ,'.'., ','*'

He refers also to the rule of Coss in introducing the rule of false, his words

being "Nuaoltu wisBen das Regnla falsi ist eyn Hegel durch weliche man allot

Begal frag (bind un gesaczt Kegula Cosse) machu mag" (p. 200).
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valuable as an example of Widman's style, for lie gives no

explanation of eossa, census, or liis cossic symbol, and though
these might be known to an algebraist, they would not be

known to the readers for whom his book was intended. Even
if the signs + and — were Widman's own invention I do not

think it would have occurred to him to explain them more
fully than he has done in the first question where he uses

them.

§ 35. I have thought it worth while to reproduce the

whole of Widman's treatment of this problem, for it is of

great interest as being probably the first occurrence of algebra

in any printed book. The fact that Widnian used algebra ill

the Rechenung has indeed been mentioned by Drobisch and
others, as will now be seen; but it is surprising that so little

attention has been paid to this first appearance of the cossic

notation in print.

Drobisch, in giving an account of Widman's geometrical

problems, says that he has not seen in any previous author

the inscription of an equilateral triangle, or of a square, in

a semicircle; and of the latter he remarks, " Et alteruni

quidem cossicae artis ope resolvere studet, sed rem perobscure,

ne dicam confuse tractat. Quod voluit hoc est". He then

explains how by taking a side of a square to be %, a right-

angled triangle can be constructed having its other side 2-lf

and the diameter of the circle for its hypothenuse, the square

of which is therefore 5 census, whence % is equal to \Z28|.*

De Morgan makes no reference to Widman's use of

algebra.f

Gerhardt only refers incidentally to the use of algebra.

In bis account of the geometrical problems in the Rechenung
he mentions the inscription in a semicircle of an equilateral

triangle and the largest possible square, 'die letztere auch
mit Hiilfe der Algebra 'J.

Treutlein merely mentions that the Rechenung is the first

printed work in which the sign for cosa occurs, and he
reproduces the sign as used by Widman.§

Troplke prints the entire paragraph " ITnd darumb . . .

regel " (quoted in §32) which contains the solution, merely

* De...\Vidmanni...compendia, p. 32.

t De Morgan expresses surprise that those who noted the chain rule in Widman
made no mention of + and — , but he himself passes over without remark the use
of the cossic sign and words.

X (itschichtc, vol. i
, p. 34.

§ Zeitschrift fur Math, mid Phys., rol. xxiv. (Supp.), p. 82: " Das die Vorzeichen
+ and - echon friih beniitzende litich von Widman (1489) ist da3 erste gediuckte
Kchriftwerk, bei dem jenes Zeichen (und zwar in der Form if) in der Bedeutung
flir cosa voikommt ".
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introducing it with the words "Die einzige Stelle, an der

Widmann algebraisch rechnet, findet sich S. 215 6— 216 6 "* In
Ilia tablef of the forms of the cossic signs used by early writers

lie gives Widman's- sign for cosa and zes
9
for census, but the

latter cannot be regarded as a sign, for it is the full word
zensus merely abbreviated by the contractions usual in writing

and printing.

Cantor does not seem to mention the use of algebra by
Widman.

§ 36. Although Treutlein and Tropfke reproduce W idman's
symbol for cosa, I do not think that it has been explicitly

noted that it is the contraction in general use for the termina-

tion ram. This suggests that it may not be an exact

reproduction of the symbol actually used by Widman in

writing, but merely the nearest symbol to it which the

printer had among his type.

Drobisch states that he has not found the inscription of

a square in a semicircle in any earlier work. There can
however, 1 think, be no doubt that it is an old problem, for

it occurs in Paciolo on p. 53' of the second part (geometry)
of the Summa, where it is briefly and effectively treated

by algebra.J It is remarkable that Widman should have
given the algebraical solution of a geometrical problem, while

in the arithmetic he was generally content merely to state

a rule and give the result, as e.g. in the question mentioned in

(4) of §21, where the result could only have been obtained

by the solution of a quadratic equation.

A study of the Rechenung shows that Widman was much
more an arithmetician and algebraist, than a geometrician,

and it seems not unlikely that his geometrical propositions

were taken from some manuscript without much examination.

§ 37. It will have been noticed that in the solution of the

problem in §32 both ra. and I\ are used to express the square

root. In other places also in the geometry 1$. is used for

square root, e.g. on pp. 214 and 216, where l l\ von 36|' and
' 18 — Ifc von 164' occur.§

* Geschichte, vol. i., p. 317. Tropfke's pp. 2I56—21G'' are on my system of
paging 217'—218'.

t Id., p. 191.

j " Di Io fo positio fia larga. l
a

. cosa fia. 2. cose. Doue ilsuo diametro fia la

U. di. 5. cose. AdGca Ij. di. 5. cose so:io iguali a. 12. Onde la cosa varra la.

J*, di. 23$".

§ In the question on interest in the arithmetic, referred to in (4)of §21, Widman
writes 'die wurzel von 600—20' for ,jti00-2U.
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The sign for cosn, which I have denoted by %, occurs

again on p. 231, in the expression '21;. Von 725', but it is

evident that here 2% is a misprint for fy*

Part II.

Introduction, §§ 38-39.

§ 38. We knovv that Widman uses the signs + and — in

his statement of the fig question to connect centners and lbs,

and that in the pepper question which immediately follows it

he connects denominations of money by the sign — . The
signs + and — thus make their first appearance in print in

the commercial questions of an arithmetic, and apart even
from the use of the signs it is of some importance to examine
to what extent this class of questions was repeated in suc-

ceeding arithmetics, and to endeavour to decide whether they

represented actual transactions or were merely invented as

exercises in arithmetical operations involving the use of the

signs + and —

.

§ 39. I have not seen the Bamberg Arithmetic (1483),

but from the accounts of it given by Ungerf and Cantorf
it does not seen likely that it contains any question of this

type {i.e. in which some of the data are expressed as one
amount diminished by another). I have found no suck

question in Borgi (1484) or Paciolo (1494), so that it is quite

possible that this kind of question originated in Widman's
desire to exhibit the uses of + and —

.

I have examined with some care the principal arithmetics

and algebras published in Germany after Widman's Reche-

mtng up to 1550 in order to determine to what extent + and
— were used by Widman's successors, and whether questions

of the type of Widman's fig and pepper questions were re-

peated, and if so how they were expressed. Some other

matters of interest, such as the use of plus and minus, mer
and wenigcr, tara and fusti, &c, which were suggested by
the examination of these books, are also included.

List of sixteen looks on arithmetic or algebra

subsequent to Widman s, § 40.

§ 40. The following list includes the chief practical or

commercial arithmetics, and also the algebras, published in

* The question is equivalent to tintlin<c the liypotlienuse of a triangle whose
base is 25 ami cathetus 10, and the answer is J725.

+ Die Method,/,; pp 37-40.
+ Vorlesutii/en, vol. ii. (second edition), pp. 221-227.
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Germany subsequent to Widman's Rechemunj of 1489 up to

the middle of the following century :

1°. Huswirt (Cologne, 1501).

2°. Kobel (Augsburg, 1514).

3°. Boscliensteyn (Augsburg, 1514).

4°. Grammateus (Vienna, 1518: arithmetic and algebra:

this being the first German algebra).

5°. Grammateus (Nuremberg, 1521).

6°. Riese (Erfurt, 1525).

7°. Rudolff (Strassburg, 1525: algebra preceded by some
arithmetic).

8°. Rudolff (Vienna, 1526: arithmetic).

9°. Peer (Vienna, 1526).

10°. Apianus (Ingoldstadt, 1527).

11°. Albert (Wittemberg, 1541).

12°. Stifel (Arithmetica Integra, Nuremberg, 1544).

13°. Stifel (Deutsche Arithmetica, Nuremberg, 1545).

14°. Spenlin (Augsburg, 1546).

15°. Eiese (Leipzig, 1550).

16°. Stifel'a edition of Rudolff's Coss (Konigsberg, 1553:

algebra preceded by some arithmetic).

Unless otherwise stated all these books are arithmetics,

and, except 12°, are written in the German language.

Titles of the sixteen books, §§ 41—42.

§41. I now give the titles of these sixteen books, and in

all cases the title given is that of the actual edition which

I have used myself: and when this is not the Hist edition

it is so stated, and the date of the first edition is given. In

the case of eight of the books, viz. 1° (Huswirt), 2° (Kobel),
3° (Boscliensteyn), 10° (Apianus), 12° (Stifel), 13° (Stifel),

15° (Riese), 16° (Stifel'a Rudolff), the title-page is reproduced

in facsimile in Eugene Smith's Mara Arithmetica. For these

books therefore 1 have given only an abbreviated title and
a reference to liara Arithmetica. In the case of 4° (Gram-
mateus), 5° (Grammateus), 6° (Riese), 8° (Rudolff), 11° (Albert),

only later editions are described in llara Arithmetics, while
7° (Rudolff) and 9° (Peer) are only referred to; ami 14° (the

first edition of Spenlin) is not mentioned. The titles of these

books are therefore given at greater length or in their entirety.
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A great deal of information with respect to other editions

of the sixteen hooks is given in Rara Arithmetical which also

contains notices of some other works, such as Reisch's Marga-
rita Philosophica (1503), and the various Algorithm, which

I have omitted ;is containing only a trifling amount of com-
mercial arithmetic. A general account of several of the

arithmetics included in the above list, with bibliographical

information, is contained in Unger's Die Methodik der prakti-

schen arithmttik (Leipzig, 1888).

§ 42. The following are the titles of the books:*

1°. [Johannes Huswirt] "Enchiridion nouus Algorismi

sununopere visas..." (Cologne, 1501). A facsimile of the

titlc-|);ige is given on p. 75 of E.A.'f

2°. [Jakob Kobel] "Ain New geordnet Rechen biechlin

aut den linien mit Rechenpteningen..." (Augsburg, 1514). A
facsimile of the title-page is given on p. 103 of R.A.%

3°. [Johann Boschensteyn] "Ain New geordnet Rechea
biechlin mit den zyffern den angenden sehulern zii nutz...

"durch loann Boschensteyn von Esslingen..." (Augsburg, 1514).

A facsimile of the title-page is given on p. 101 of R.A.

4°. [Henricus Grammateus] "Ayn new kunstlich Buecli

welches gar gewiss vud behend lernet nach der gcmaineu
regel Detre, welschen practic, regeln falsi vn etliche regeln

* Rara Arithmetica is so often mentioned in this section that it will be referred

to by its initials R. A.

t Besides the editions mentioned by Eugene Smith in R. A. (p. 74) there i3

one of 1524 bearing the title "Enchiridion artis nvrnerandi, paruo admodum.
negutio omnein calculi praxim docens in integris, minutijs ualgaribus, & proiec-

tilibus : regulis aliquot mercatoru additis nequaquam contemnendis. Apud sanctam
Vbiorum Agrippina in sedibus Eucharij Ceruicorni, Anno M.D. xxiiii". At the
end there is " linchiridij iohannis Husvuirt Sanensis de arte Calculatoria, Finis" :

followed by the coloplion "Impeusia integerrimi bibliopolae M. Gothardi Hittorpij,

ciuis Coloniensis."

| An edition with a similar title and having the same number of leaves was
published at Oppenheira in the same year (1514). This edition is referred to in
R. A. (pp. 102. 106), and its title is quoted by Unger (p. 44). A number of other
editions of Kobel*s works are mentioned in R. A. (pp. 100—113); but an edition

printed at Oppeuheim in 1517, which is not referred to in R. A , differs so essentially

from that of 1518 (also printed at Oppenheim), the title-page of which ia given in

facsimile in It. A., that it seems worth while to quote it :
" Eyn Neiiw Rechtbiieh-

lein. Vff den Linien vn Spacie, Mit den Kechenpfennige : ytzo : zii dez Zweyten
male, Mit vi In Ziisetzen, giiteii Leren, vnnd Kxempeln, Zii Oppenheym Geoident
Vnd Geuiickt. . . .", then eight verses beginning ''Pythagoras Der sagt for war",
and a diagram of a llechenbanck with three 'liankiers'. The colophon is "Der
Zweyt I ruck zii Oppenheym,mit vil ziisetzen,Geoident vnd Getriickt. MCCOOO.XTll".
The book is in the British Museum Library. It may be mentioned that there are
'24 verses altogether, a3 they run over the verso of the title-|»age, there being eight
on the title-page and Hi, beginning "In Zal in Masz vn in Gewicht", on the veiso.

1 he 24 verses differ but slightly from those which Ungerquotes from Adam Etiese

(1529) on p. 03 of Vie Methodik. The ten verses on the title-page of the 1518
edition (reproduced in R. A j are quite different.



30 Dr. Glaisher, On the early history of the signs

Cosse mancherlay schone vil zuwissen nottirfftig reclinilg miff

kauffmanschafft. Audi nach den proportion der kutist dea

gesanngs jm diatonisdien gesehlecht ansa zutayle mono-
chordii, orgelpfevffe vii ander instrument ansa der erfindung

Pythagore. Weytter ist hierjnnen begriffen buechiinlteu

durch das Zornal, Kaps, vnd selinldbiieli Visier zumaclien durch

den quadrat vnnd triangel rait vil andern lustigen stricken

der Geometrey. Gemaelit aufF der loblichen hoensehul zii

Wien in Osterreich durcli Henricu Grainmateum, oder schrey-

ber von Erffurdt der siebe freyen kiiusten Maister ". The
preceding is red: tlien in black "Mit Kayserlielie gnaden
vnd Priuilegien das bueeli nicht nach zu trucke in sedisjare"
(Nuremberg, 1521?). The colophon is " Gedruckt zu Nurn-
berg durcli Iohannem Stiichs fur Lucas Alantsee Buchfurer
vnd Burger zu Wien". The first edition was printed ill

1518 at Vienna : and the full title, which is long and resembles

that of the present edition, is given in full by Unger (p. 47).*

5°. [Henricus Grammateus]. "Behend vnnd khunstlicli

Redlining nach der Regel vnd welliisch practie, rait sainbt

ziiberaittung der Visier yin quadrat vnd triangel. Gemaelit
auffder lobliehe hohe sehul zu wienn durch maister Henricheu
Grammateil ". The colophon is "Gedruckt vnd volendet zu
Niirnberg durch Iohannem JStiiehs ym iar nach Christi gehurt.

M.D. XXI ". This book is referred to in R.A. (p. 123), where
it is stated that, it is an extract from the work of 1518. A
considerable portion is the same as in the larger work, but not

the whole. This book is not referred to by Unger.

6°. [Adam Riese]. "Rechenuug auffder linihen vnd federn

in zal, masz, vnd gewicht auff allerley haudierung, gemaelit

vnd zusaraen gelesen durch Adam Riesen von Staffelstein

Rechenmeyster zu Erffurdt im. 1522. Jar. Jtzt vff sant Anna-
bergk, durchin fleissig vbersehen, vnd alle gebrechen eygent-

* I have not seen the first edition (Vienna, 1518), but I do not doubt that the
edition, of which the title is given in the text, is an exact reprint. This edition,

which is in the I5iiti>h Museum Library, is by the same printer at Nuremberg as 5°

(Grammateus' Redlining). I have given the long title in full because it differs from
that of the 1518 edition, which (except for trivial verbal differences) was followed

in those of Frankfort, 1535 and 1572. The full title of the 1518 edition is given
by Unger (p. 47), and the title-page of the 1535 edition is reproduced in facsimile

iixRA. (p. VIA).

The date of the Nuremberg edition described in the text is probably 1 52 1 . This
I infer from the fact that the blank pages headed 'Zornal,' ' Kaps,' and 'Schuldfc

Buech' have the heading 1521, which is therefore likely to be the year of publi-

cation. It is also the date of the abridgment, 5°. The date of the privilege is

July 20, 1518. The only other edition that I have seen myself is that of 1572.

There is less on the page in this 1521 edition than in that of 1518, for Treatlein
[Zeittchr. fiir Math, u. Pkys., vol. xxiv.. Supp. p. 13) describes the hitter as

ng{M haves, while the edition of 1521 contains 124 leaves (including the
title-page leaf and colophon leaf).
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licli gerechtfertiget, vnd zum letzten eine Iiiibsclie vnderrichtung
aiigehengt." (Erfurt, 1525). The colophon is " Gedruckt
vnnd volendet zu Erffordt durch Mathes Maler zu scliwartzen
Horn am abent Nicolay ym Iar 1525 ". The preceding page
(K iii') concludes with the words "Datum vffsandt Annabergk
Dinstag nach Martini. Im 1525 ". There was an earlier

edition in 1522, but Unger (p. 51) does not refer to any exist-

ing copy. Jn R. A. (p. 139) the title just quoted is given as
that of the 1522 edition, but this seems to be an error.

7°. [Christoff Rudolff]. "Beliend vnnd Hubseh Rechnung
durch die kunstreichen regelu Algebre, so gemeincklicli die
Coss genellt werden. Darinnen alles so trelilich an tag ge-
geben, das auch allein ausz vleissigem lesen on alien miindtliche
vnterricht mag begriffen werden. Hindangesetzt die meiniig
aller dere, so biszlier vil vngegiiiudten regelu angehahgen.
Einein jeden liebhaber diser kunst lustig vnd ergetzlich.

Zusamen bracht durch Christoffen Rudolff von Iawer". The
colophon is " Argentorati Vuolfius Cephaleus loanni lung,
studio & industria Christophori Rudolf Silesij, excudebat.
Manns extrema operi data, mense Ianuario. Anno supra
sesquimillesiniuui uicesimoquinto".

8°. [Christoff Rudolff]. "Kunstliche Rechnung mit der
ziffer vnd mit den zal pfennigen, daraus, nit allain alles so
sicli in gemainen kaufmans hendeln zuetregt, sunder audi was
zu sillier vn goldt rechnung, was zu schickhung des regels,

was aynem munlzmaister : rechnung belangend : zugehori°-,
baide dutch die Regl de tre (auch nicht on sundere vortail) vnd
die Welhisch practick ausztzurichten, gelernnt wirt. Zu Wien
in Osterreich alien liebhabern diser kunst zu gemaynem nutz,
durch Christoffen Ruedolf verfertigt. Getruckt zu Wien, im
lare nach der geburth Christi. 1526". The colophon is

"Anno m.d. xxvi. Getruckt zu Wiefi in Osterreich, durch
Joannem Singriener ".

9°. [Willibald Peer]. "Ain new guet Rechenbiichlein,
"Welches gar gewis vn beliend lernet nach der gemaynen
regel Detre, mit sambt der welschen practigk, auff das kiirtzist

in die ziffer gesetzt, Mancherlay schone vnd ziivvissen nottiiiff-

tige gerechnung, auff kauffmas handirung, es sey zum gewin

* Adam Riese published in 1518 " Rechnung auff der linihen gemacht durch
Adam lliesen . .

." There was a second edition in 1525. See Unger, p. -19; R.A.
p. 139; Berlet, "Adam Riese, sein Leben, seine Reclienbiicher ..." 1892, pp!
J, 32. Unger knew of no existing copy of the 1518 edition. He gives the title of
tiie 1525 edition, and states that it relates only to calculation by counters. Thus
two different Arithmetics by Kiese bear the date 1525; both were printed at
Erfurt, and both were second editions.
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oder verlust, vnd besonderlich iiberlandtreolinung. Gemacht

zii Wienu in Osterreieh dureli Wilibaldum Peer, biirtig von

Aystat". Tlie colophon is "Getriiekt zii Niinnberg durch

Fridrieh Peypus, im jar M.D. xxvij." Peer is not mentioned

by linger or Cantor: and the book is only incidentally referred

to in R.A. (p. 156).

10°. [Petrus Apianus]. " Eyn Newe Vnnd wolgegiiindte

vnderweysung aller Kaufr'mansz Rechnung in dreyen bticliern

...dureli Petruin Apianu von Leysznick, der Astronoinei zii

Ingolstat Ordinariu, verfertiget " (Ingoldstadt, 1527). A
facsimile of the title-page is given on p. 15G of R.A. and the

colophon on p. 155.

11°. [Johann Albert] "New Rechenbiiehlein auff der

federn, gantz leicht, aus rechtem grund, jnn Gantzen vnd

Gebrochen, Neben angehefften, vnlangst, ausgelassnein Biich-

lein auff den Linien, dem einfeltigen gemeinen Man, vnd

anhebenden der Arithmetica Liebhabern zu gut. Durch

Iohan Albert, Rechenmeister zu Wittemberg, zusamen

bracht, Auffs new mit allem vleis vbersehen, gemehret vnd

gebessert. 1541". The colophon is "Gedruckt vnd volendet

zu Wittemberg, durch Georgen Rhaw. 1542 ". This is the

second edition. The Hrst edition was published in 1534 {11. A.,

p. 180). The edition of 1541 is the first mentioned by Unger

(p. 55). The title of the 1561 edition is given in R.A. (p. 178).

12°. [Michael Stifel] " Arithmetica integra Authore

Michaele Stifelio..." (Nuremberg, 1544). A facsimile of

the title-page is given in R.A. (p. 225).

13°. [Michael Stifel] "Deutsche Arithmetica. Inhaltend.

Die Haussrechnung. Deutsche Coss. Kirchrechnung. . .

."

(Nuremberg, 1545). A facsimile of the title-page is given on

p. 232 of R.A.

14°. [Gall Spenlin] "Arithmetica kiinstlieher Rechnung

lustige Exepel, Mancherley schbner Regeln AufF Linie vnd

Ziffern, vormals nie gesehen. Durch Gall Spenlin, Rechen-

inaister inn Vim zii Trucken beschriben &c. 1.5.4.6. Gredruckt

zii Augspurg, durch Hainrich Stayner". The colophon on

p. CLV is " Getruckt zii Augspurg, durch Haynrich Stayner,

im Iar M.D. XLVI.". To this book (in my own possession]

the only reference I know of is in R.A., where Eugene

Smith reproduces the title-page of an edition of 1566 "Durch,

Galium Spanlin" (p. 274), printed at Nuremberg. He says

(p. 271) that he knows of no other edition, but as the dedication

is dated 1556 "this is possibly the date of the Mist edition".
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In the edition of 1546 the dedication is dated 1545, so that

there would appear to have been an intermediate edition

between those of 1546 and 1566.

15°. [Adam Riese] " Reehenung nach der lenge, auff den
Linihen vnd Feder...Durch Adam Riesen. im 1550. Jar"
(Leipzig, 1550). A facsimile of the title-page is given on

p. 251 of R.A.

16°. [Michael Stifel] "Die Coss Christoffs Rudolffs Mit
Bchonen Exempeln der Coss Durch Michael Stifel Gebessert
vnd sehr gemehrt... (KBnigsberg, 1553). A facsimile of the

title-nage is given on p. 259 of R.A. The colophon is dated
1554.'

The use of the signs + and — , or equivalent words, in the

sixteen books, §§43—63.

General statement, § 43.

§ 43. Ihaveexamined inthesesixteen works* the occurrence
of the signs + and —, of the words plus and minus, and of

jner and weniger or minder. I have also looked for questions,

similar to Widman's fig and pepper questions, in which the

sign — or the word minus or weniger is used in connection

with weights or with money.
Questions of the latter class (i.e. in which minus, minder;

weniger, or -, occurs in the expression of the data) were found
to be so numerous that it seemed better to consider them
separately. 1 have therefore placed them together in §§ 64—75,
after the general account of the different books and tiie use

made in them of the signs + and — and the words plus,

minus, &c\ (§§44—63).
Before giving this general account it is convenient to recall

that Widmau defines + as mer and - as minus (§ 11), and that,

except for this one use of minus, it does not occur again except
in the rule of false. The word plus is used by him only in the

rule of false.

Euswirt (1501), Kobel (1514), Boschemteyu (1514), § 44.

§44. The first two works, viz. l°(Huswirt, 1501) t and 2

* The numbers 1°, 2°, ..., 18° which are prefixed to the titles of the sixteen
books in §12 will be used to denote the books themselves. After the number
denoting the book the name of the author and the date of the book will generally
be added in parentheses.

t Since writing the account of the sixteen books I have met with an AJfforitkmus
by Ambrosins Laclker de Merspurg, which was printed at Frankfort on" the Oder
between 1506 and 1510 (and is therefore earlier than any of the sixteen books,
-except 1°J, which contains questions of the same kind as Widman's fig and pepper
questions, the words plus mid minus beiuc U3ed. This work will be described iu
§70.

VOL. LI. D
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(Kobel, 1514) contain only the fundamental processes of arith-

metic, and applications of the rule of three to examples which

are not of mercantile significance. The third, 3° (Boschen-

steyn, 1514), is more comprehensive, and contains some

comparatively complicated commercial examples, two of which

are mentioned in § 65.

Grammateus (1518), §§ 45-46.

§ 45. 4° (Grammateus, 1518*) is a book of a higher class.

Besides arithmetic it contains an algebra, the first published

in Germany. In the arithmetic the signs + and — are used

only in the rule of false (F vi'). The direction there given

"with respect to the result derived from a position is "if it is

too large put +, if too small put — :
'. (1st zu viel setze +

1st aber zu wenig sctz -). The signs + and — are freely used

in the algebra, and are defined (G iii) as und and minder.

(Vud man braucht solche zaichen als + ist vnnd, - mynnder).

In the algebra they connect the various cossic numbers in

binomial expressions; and the rules for the addition, sub-

traction, and multiplication of quantities affected by the signs

are given. Wot only are the signs + and — used, but also

plus and minus which occur in such expressions as

2 ter: mi: 24 N ,72 pr: plus 72 ZVf
and —[ -, :

—
.

16. 5t: 1 se: plus 2 prr.

Grammateus gives a general explanation of the rule of

false on i?
1

vi' and F vii, but the numerous applications of it,

in which the questions are solved both by the rule of false and

by the Coss, occur later in the book (I v &e.) The signs -f-

and — are always used, and the position and error are placed

in the same line, as was done by Widman, but no cross is

used.

§ 46. The word minus occurs quite early in the book (A vi').

It is there pointed out that the multiplication of two digits

may be facilitated by the equalities

o

mal ist 20 minus 2 mal 8
2

* Alttioiifil> I give the date 1518, 1 quote from the edition of 1521 (?), the title

of which is given under 4° in §42 : and the page-references are to that edition.

t H iii and Liiii. Grammateus mentions the cossic names radix, census, ciibns,ifcc,

but the names which lie actually uses are niimeni*, prima, seeunda...abbreviated
to N. pi, se, tor, quad...He seems to use plus and mi: only in fractions, which
suggests that this is owing to the printer not having a type for + of the requisite

size.
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mal ist 30 minus 3 mal 8, &c*

Grammateus derived this rule from Peurbach, his words
being "Vnd diese regel beschreybt vns Maister Georgius vou
burbach jn dem lateinisehen algorithmo, geinacht fur die

juugen studenten der lioen sehuel zu Wien ". Tlie rule occurs
in Peurbach's Algorithnus, under Multiplication, where,
referring to it as 'regulam illam autiquam ', he describes it

as follows: "Quilibet digitus in aliquein digitorum multipli-

catus in se producit emu nuinerum, qui manet postquain ab
articulo a minori digito denoininato, minor digitus tociens

detrahatur quot sunt imitates a maiori digito ad deuarium
complendum, ut ter octo sunt triginta, demptis inde bis tribus.

Postquam igitur digitorum omnium multiplicationes in promptu
tenes, ad opus accedere potes".| I have thought it worth
while to quote in full Peurbach's description of the rule in

order to show the change in its mode of statement made by
Grammateus, who after a brief description gives numerous
examples of the rule, expressing them as formulae and using
the word minus (with a German context), just as - would
now be used in 2 x 2 = 20-2 x 8, &e. This must be one of
the first instances in which the word minus is used in this

manner in a printed book. In Peurbach's example the word
demptis is used. WidmanJ also gave this rule, but he did
not use a sign or the word minus or an equivalent.

The utility of the rule consists in replacing a multiplication
of two digits, in which both are greater than 5, by a multipli-
cation in which only one is greater than 5 : and the rule is a
very simple one, viz. to apply a cipher to the smaller digit and
subtract from the number so formed the product of the smaller

* Grammateus gives fifteen of these equalities, tlie last being

9

mal ist 90 minus 1 mal 9.

9

t I quote from the Leipzig edition of 1503, but the rule is substantially the
6£ftiie in the earlier Vienna editions.

% His description (p. IT') is " Szo dn eyn fignr mit der anderu ader mit yr selbst
multiplicirn bist sso secz albeg czu der kleynerii ader sso sy gleich seyn zeu eyner
welicher ess dan ist eyn Vnd darnach wait wass zwischen der grosseril ader ire
gleichen vnd 10 ist. vnd szo manchmol 1 zvvischen in peden ist. szo offt subtrahir
die kleiner figur von der zal da fur du da das ge:-aczt bast, vnd wasH dan do
pleybet dz ist die .zal darnach du gefract hast Alsso liie yn diessem exempel 7
inol 8 Nu secz fur die 7 alsso 70. vnd'zwischen der grossern zal alss ». vn-d 10
ist 2. Da rum subtrahir die klevner zal alss 7 zwir vonn der. da fur du das II

gesaczt hast, vnd ist II bbo pleibt 56 vnd ist recbt". The rule which Peurbach
describes as atitiqua occurs in Bacroboaco's Algorumus, where it appears in the
form "quinara digitus multiplicat digitum, subtrabendua est minor digitus al)
articulo suae deivominationis per differentiam majoiis digiti ad deuarium, denario
simul computato" (Halli well's Rara Alatktvuitica, p. 12). Jn other manuscripts of
fcjaciobosco that have been printed the wording is slightly different.
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digit and the complement to 10 of the larger, i.e. to multiply

7 by 8, 70 is written down, and the product of 7 and 2 sub-

tracted from it. Of course by appending the to the smaller

number the product to be subtracted is made smaller.*

Gramviateus (1521), § 47.

§47. 5° (Grammateus, 1521). This is a separate Arith-

metic, derived from the arithmetical portion of 4°, but slightly

differing from it. Neither the signs + or -, or the words plus

and minus, occur. The rule of false is not given. A com-

mercial question is quoted in § 66.

Riese (1525), § 48.

§ 48. 6° (Riese, 1525). Though technically a second edition,

this is practically the editio princeps of this well-known work.

The signs + and — occur only in the rule of false, and are

very sparingly used there. They are defined (G viii) in the

words "sagenn sie der warheit zuuil so bezeychenn sie mit

dem zeychen + plus wu aber zu wenigk so bescreib sie mit dem
zeychen -^ minus genant";f but in the numerous examples

that he gives of the use of the rule the words plus and minus

are always used (and not -f and —) : for example, Riese writes

the positions and errors as follows:

12 minus 5

24 pi us

At the end of the book, in a sort of appendix to the rule

of false (' In Regula falsi ', K iii), it is shown how a common
factor may be divided out from both errors, or from both

positions and the difference of the errors, &c. : and here the

signs are used, but in a distorted form, the horizontal bar in

both cases being extremely long.}

* Widman and Gram matews also give the rule in which the two digits to be
multiplied are placed the one under the other and their complements to 10 are

placed to the right of them ; then the product of the two complements gives the

second figure of the product, and the first figure is obtained either as a cross dif-

ference or as the units' figure in the sum of the two given digits. Expressed algebrai-

cal) v the two rules are : if ", b be the two digits and o* V their complements to

10, 'then ab = \0a.-aV, ab= urb'

+

10 (a- b'] or a'U+ l()(o + 6- 10). ltiese (lo2u)

also gives both rules.

t This is, I think, the first instance in which -r- is used instead of -. Riese

uses - in his Arithmetic of 1550 (§61).

J 1 think we may infer from this that the words plus and minns were used in

the examples on the rule of false instead of + and - owing to the want of suitable

type for +.
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There is a question in which weniger is used, and two
questions of the same type as Widman's tig question in which
centners and pounds are connected by the word minus (see § G7J,

Riese s manuscript Algebra (1524), § 49.

§ 49. Riese wrote an algebra in 1524 which, however, he
was not able to publish. It was discovered in the library at

Marienberg in 1855, and an abstract of it was published by
Berlet in 1860. This abstract was republished by him in

1892 in his pamphlet " Adam Riese, sein Leben, seine Rechen-
biicher und seine Art zu rechnen. Die Coss von Adam Riese.

Von Realgymnasialrektor Professor Bruno Berlet. in Anna-
berg i. E." (Leipzig and Frankfort, 1892). The manuscript
has the title "Adam Riesens seel, weiland Rechenmeisters zu
IS. Annaberg Anno 1524 auffgesetzte und mit eigener Hand
geschriebene, aber niemals publicirte". In the abstract, as

printed by Berlet, the signs + and — are freely used, and the

word minus also occurs. In the dedication he refers to Widmau
and Gratnmateus.

Rudolff's Algebra (1525), § 50.

§ 50. 7° (Rudolff, 1525). This is a comprehensive work
on algebra, showing a great advance on Grammateus. The
signs + and — do not occur in the introductory chapters upon
arithmetic, but first make their appearance in the first para-

graph of chapter V (the first chapter of the Coss) where,

referring to the addition and subtraction of numbers, he writes,
*' wiirt der zfisatz vermerckt bei dem zeichen +, bedeiit plus,

•der abzug bei dem zeichen — bedeiit minus (D ii)." He gives

the rule for the addition, subtraction, and multiplication of

quantities affected by -f and — as in Grammateus. The signs

+ and — are freely used throughout the whole of the algebra

in connection with numbers and the cossic signs, just as they

would be at present. The rule of false is not given.

Rudolfs Arithmetic (1.526), §51.

§51. 8° (Rudolff, 1526). Rudolff's Algebra was published

in 1525 and his Arithmetic in the following year. The signs

+ and — do nut occur in the Arithmetic: nor do the words
plus and minus occur in the text, but minus is frequently used

in the examples. The rule of false is not given. The examples,

which are of a mercantile character, are numerous, and include

some of the same kind as Widman's fig question, and souuj

D2



38 Dr. Glaisher, On the early history of the signs

in which minus is used in connection with money (see § 68).*

One of the hitter deserves notice because it resembles Widman's
question relating to the division of money in which the shares

of the persons are ' 2 vnnd 6 mer', &c. (§ 27), but the mode
of treatment is more satisfactory. The question is "Item
drei haben zu tailen 138 flo. sol der erst haben ^ vnd G flo.

der ander I vnd 4 flo. den drift \ mill" 2 flo." (L 4'). In the

solution 6 and 4 are taken from 138 and 2 is added, leaving

130, which is then divided in the proportions |, \, j.* Usage
seems to have sanctioned the loose mode of statement which
occurs in this question, for similar questions were given by
Widman and Paciolo, and they continued to appear in books
certainly up to the middle of the sixteenth century. | The
meaning assigned to such questions by Paciolo and Rudolff
seems to be the only admissible one. As in some other

questions of the period the solution consisted as much in

rinding a suitable interpretation of the question as in the

arithmetical work. In Widman's interpretation minus simply
denotes a subtraction ; in Paciolo's the minus is at first treated

as a direction to pay, 'vnd' denoting something additional to

be received.

§ 52. De Morgan was acquainted with this work of Ru-
dolff 's, but he was unaware of the existence of any copy of

the Algebra which Rudolff had published in the preceding

* Itudolff uses tlie words dragma, radix, census, cubus, and the cosmic symbols,
which remained in use for so long afterwards (not the N, pri, se, ter, ..., of Grani-
mateus).

* When a sum of money was to be divided among three partners, so that their

shares were to be h, J, 3. the accepted meaning was that the division was to be
made in these proportions, but when the money was to be divided so that the

shares were £ + <>, j+ 4, ^ + 2, this might mean either that a number \ was to be
taken arbitrarily and the money was to be divided in the proportions i\ + 6, £\ + 4,

£\ + 2, or it might mean that after the partners had received respectively ti, 4, 2,

the remainder was to be divided among them in the proportions of £, ^, £. The
latter is the more satisfactory interpretation of an ambiguously expressed question,

as it leads to a definite solution. Widman, however, adopted the former interpre-

tation, and would have taken \ to be some number containing 2, 3, 4, as e //., 24.

t Besides the questions referred to in the note to §27 (p. 19), Paciolo gives two
others (p. 150') ill which 100 is to be divided among two persons so that one has
'la. £. Hi. 4' and the other 'el. }. m. 2' and in which 10 is to be divided so that one
has • la. i. m. 3' and the other 'el. ^. p. 4". In the solutions of these questions I(H>

and '.) are divided in the proportion of 3 to 2 in order to obtain 'i' and '

I '.

Feliciano [Libro di Aritkmeticn, 1526) has a similar question (II 3') in which 100 is

to be divided and the shares are ' la mita pin .3.', 'el
.-J.

pin .5.', and 'el J pin .'_'.'. A.

more elaborate question of the same class in given in 15° llie.se (1550). See §62.
* "The work in which + and — were applied to algebra is taken to be the first

edition of Christopher Rudolff" s Die Com, 1624. This first edition is lost : no copy
of it is known to exist. A Latin translation, made in 1540, is said to exist in the
Imperial Library at Paris . .

." After mentioning a reference made by Rudolff
in liis Arithmetic to his Algebra of the preceding year, and referring to Stifel's-

I 1553) he concludes "I shall not feel satisfied abont the first edition of

Rudolff until either a copy is produced, or a full account of the Latin manuscript
is published" {Camb. Phil Trans., vol. xi . p. 200, 210).
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Stifel (see § 63), but De Morgan did not consider that the free

use of + and — in that edition justified the inference that the

signs had occurred in the same manner in the Hist edition, as

they might have been introduced by Stifel. He writes, "In
the Kunslliche Redlining of 1526 Rudolff does not show a

single mention or use of + and - : his signs are x as a pair

of guides in the addition of fractions, and x = in the rule of

three. If he had had his head as full of + and — as a man
must have had who had published in 1525 a Die Coss like that

of 1554, this would have been very strange."'* This, how-
ever, is what actually happened; for in the Eechnung durch

die kunstreicken regeln Algebre of 1525 the signs + and —
are freely used, and yet they do not occur at all in the

Kunstliclie Eechnung of 1526: nor do they occur in the

arithmetical portions of the former work, Rudolff confining

them to algebra.

Peer (1526), §53.

§53. 9° (Peer, 1526). The remarks upon the contents of
"8° (Rudolff) apply also to this arithmetic, except that weniger

and minder are used instead of minus in the examples (see

§§69-70).

Apianus (1527), §§54-55.

§ 54. 10° (Apianus, 1527). This is a good commercial

arithmetic, written by Petrus Apianus the astronomer, f Jt

shows individuality, and differs in essential respects from

Widman, Riese, or Rudolff. Quite early in the book ( 10 vi')

there is a question, formed entirely on the model of VVidman's

fig question, in which the signs + and — are introduced and

defined as in Widman. Jn this question, 9 barrels of oil,

whose weights are expressed in centners and lbs, connected

by the signs + and — , are defined in the words "Das f bedeut

mehr, das — bedeut minder". The tare on each barrel is

given, and it is explained that the total tare is to be subtracted

from the sum of the weights. The form of the question is

exactly similar to that of VVidman's, but Apianus first finds

the sum of the weights (taking into account the positive and
negative numbers of lbs) and then subtracts the tare from

this total, whereas Widman added the sum of the lbs having

a negative sign to the tare, and subtracted the total from the

sum of the centners and the lbs with a positive sign.

* Id., -p. 210.

t I do not know why De Morgan refers to the author of this arithmetic as a
'writer printed by Apian' {Id., p. 208).
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Although + and — are thus introduced so early in the book
this single question stands alone, and the signs do not occur

in questions of a similar kind (such as those in liudolff and

Peer), the word minder, and in one case minus being used

instead. The question involving + and — is quoted in full in

§ 71, as also are some of the other questions.

§ 55. After the question on E vi' the signs next occur on

M i', when they are defined anew in the rule of false. The
definition there given is " zii zeitten meher oder minder, was
zii vil ist vermerck mit dem zeichen plus +. 1st zii wenig,

mit dem zeichenn minus —", and he gives the rule for addition

and subtraction in words and in the form

IS: i A ;
Subtrahir Addir

In the examples on the rule of false the signs + and — are

used, and Apianus places the error below the position (as was
done by Borgi and Paciolo, though they of course did not use

the signs).* When several results are required in the question

he deals with them all simultaneously in the process (instead

of determining only one, and deducing the others), so that his

diagrams contain a number of guide lines radiating from the

errors instead of the simple cross.

Albert (1541), § 56.

§ 56. 11° (Albert, 1541) is a commercial arithmetic with a

great many examples. The sign — first occurs in a question

on Dviii', where a barrel of butter contains '2 centner — 4

pfund ', that is, 216 lbs, as here a centner is 110 lbs. It next

appears on I iii, where a weight is given as ' 12 cent. 4 stein —
6 pfund ',t :uid there are a number of similar questions in

which — occurs. It is also used in connection with money,

*%e.g. '9fl-3£ort' (Liii'); ' 17gr^-23 ' (Miiii) (see §73).

The sign — is used always, and neither the word minus nor

any German equivalent occurs.

The signs + and — are defined in the rule of false (Mvi)

as follows: "Vnd wo solche zwo Falsche zaln, etwas mehr
(denn die Frag begert) bringen, So mach von stund, nach der

Falschen zal, diese linie mit durchgezognem stricklein, also

— /— Vnd bedeutet Mehr . . . Wo aber zu wenig, zeuch nach

* This is the first German printed book in which I have seen the error so

placed.

t A stein is 22 lbs (£ of a centner).
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der Falschen zal diese linie — Vnd bedeut weniger". In the

diagrams in the rule of false the position and error are written

in the same line, thus

24—/—10 (22

16 12

It is evident that there was no type for +, and that the symbols

used were put together at the printing office by combining
— and /.

StifeVs Arithmetical. Integra (1544), § 57.

§ 57. 12° (Stifel's Arithnetica Integra, 1544) is a treatise

on arithmetic and algebra showing great power and originality.

The arithmetic is not commercial, and there are no questions

of a mercantile character.

The signs + and — appear, without explanation, on p. 38,

where it is mentioned that all numbers can be expressed by
powers of 3: thus, 1,3-1,3, 3 + 1, 9-3-1, 9-3, 9 + l-3,&c.
They do not occur again in the arithmetic: even in the rule

of false the words plus and minus are used.

In the algebra (p. 110), under the heading "De signis illis

duobus + & —
", he writes " Quando addenda sunt duo in-

commensurabilia, uel duo aliqua, quorum proportio ignoratur

(ut in cossicis numeris fere unique fit) tunc interponimus

signum hoc + ipsis addendis, dicimusque ita completam esse

additionem. Et hac ratione uocatur signum additorum.

Bimili ratione uoeamus signum hoc—, signum subtractorum :

duin em subtrahere uolumus aliquid, ab alio sibi incommensu-
rabili, aut ab eo, cuius proportio ad subtrahendum est ignota,

tunc utimur illo signo, ut in exemplis tanquam compositorum
uidebis paulo inferius".

He repeats this explanation again on p. 248', but with an
addition, viz. " Sciendum tamen, quod duplici necessitate

utimur signis illis. Primo enim utimur illis in numeris tali bus,

quorum proportio praecise dari non potest : ut in numeris
irrationalibus. Secundo utimur eis in numeris talibus, quorum
proportio ignota est, & si praeeisa sit: ut in numeris cossicis,

dum nuineros quaarimus nobis absconditos. Sed praeter neces-

sitate banc duplicem, utimur eis commoditatis gratia, ut aliquid

per ea monstremus aut doceamus, queadmodum me hoc loco

uti videbis, non necessitatis sed commoditatis causa".

Thus >Stifel considers that the use of the signs is to connect

by addition and subtraction quantities for which the actual

addition and subtraction cannot be performed: but then he
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adds that tliey can be used whenever it is convenient. Stifel's

use of the signs is exactly the same as at the present day.

In the dedication of his third book (which relates to the

rules of algebra*) St if el mentions his obligations to Rudolff

and Riese, whom he has never seen but for whose works he
has a great admiration.

StifeVs Deutsche Arithnetica (1543), §§58-59.

§ 58. 13° (Stifel's Deutsche Arithnetica, 1545) consists of an

arithmetic and algebra. The former consists of only 16 leaves,

and there are no commercial questions. In the algebra the

signs + and — are used, but not the cossic symbols; in fact,

the work is an attempt to teach algebra (the solution of

equations) without the use of the cossic symbols, the word

'sum:' replacing the cossic symbol for res or cosa, 'sum:
sum:' replacing census, &c, with other developments.

§ 59. Libri was of opinion that in this work Stifel claimed

for himself the invention of the signs + and — , the remarks

in his sale catalogue with respect to the bookj being: " Stifel

uses the sign + for addition and — for subtraction, and distinctly

states that whenever you see + you may read Und oder Mer
(Et vel plus) and where you see — Weniger oder Minder
(paucius vel minus). He also distinctly claims these signs as

his own invention, ' Darumb so gedenck nur niclit, das dise

ding schwer seven zu lernen, oder zubehalten, vnd ist doch

die gantz sach, DIESER Meiner ZEiaHEN hiemit gantz auszge-

richt vnnd an tag gebracht'".

We know that this could not have been Stifel's meaning,

as he was familiar with Rudolff 's algebra, nor need his words
convey this impression. The following are the sentences in

in which -f and — are explained :

" So ich aber ein gerechnete zal J (als 3 oder 3 fl. ttc.) soil

addiren zu einer vngereclmete zal (als zu 2 sum: oder 3 sum:)

so muss ichs thun durch das zeiehen +, welchs ich setze musz
zwischen sie, als 2 zu 3 sum : machen 3 sum : + 2. das machstu

denn also lesen, 3 summen vnd 2. Denn wo du dises zeichen

+ findest, da magstu an stat des selbige zeichens lesen disz

woitlein Vnd oder Mer.
"Also audi, so du solt ein gerechnete zal Subtrahiren von

eyner vngerechneten, als 7 von 10 sum: so stcht das exein-

* p. 22fi'.

t No. 594 (p. 73) of the catalogue referred to in the note on p. 1

.

X A 'gerechnete zal' is equivalent to a known quantity, ami an ' un gerechnete
zal' to an unknown quantity.
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plum also, 10 sum : — 7. Das magstu also lesen, zelien Summen,
weniger 7. Denn wo du dises zeiclien — tindest, magstu darfur

lesen, Weniger oder Minder, den es ist ein zeiclien des subtra-

liirens, gleicli wie + ist ein zeiclien des addirens. Item so ich

soil 2 sum : subtraliiren von 70. so steht das exempel also,

70-2 Sum:" (p. 21').

Stifel then in several other paragraphs describes another

notation, explaining again the use of + and — , and finally

concludes (p. 22) the whole account with the sentence " Dariunb
so gedenckt . . . gebracht " quoted by Libri.*

It seems to me that the words 'these my signs' mean no

more than 'these signs which I am using'. As a fact, the

notation sum :, sum : sum :,sum:^4, &c, was invented by Stifel,

but I do not think that his words were intended to assert

a claim to it.f

Spenlin (1546), § 60.

§ GO. 14° (Spenlin, 1546) is an ordinary commercial arith-

metic. The signs + and — are used only in the rule of false

and are defined (p. exlii) " bedeut das zaichen + ziiuil, vnd
das -^ zii wenig". In the diagrams the position and error

are written in the same line and a large cross is used: so that

the signs -f and -f- stand between the arms of it (see § 86).

The words plus and minus are not used. The word minder

occurs in the data of three questions, and is the word used

in connection with both weights and money. These will be

referred to in § 74.

It will be noticed that Spenlin follows Riese in using -v-

for minus.

Riese's Rechenung vach der lenge (1550), § 61.

§ 61. 15° (Riese's Rechenung nach der lenge, 1550)$ is

a comprehensive arithmetic not unlike Rudolff's Kiinstliche

* The words ' dieser meine zeichen ', which Libri printed in capital?, are not
emphasised in the original.

t In 1857 Cantor, referring to the fact that the signs + and - were still generally

attributed to Stifel (although Drobisch had shown that they were used in 1489),

quoted the Deutsche Arithmetica as affording evidence to show that they had an
older origin ('Indirect gesteht Stifel selbst, dass die Zeichen + — altereu

Ursprunges sind'). In the passage in question Stifel says that just as one adds

by the sign + ('wie man addiret durch das Zeichen + ') so he multiplied by the

sign M and divided by the sign D [Ztitschriftfur. Math, nnd Phys., vol. ii. p. 36t!).

J Berlet states on p. v of his life of Adam Rieee, prefixed to the tract referred

to in §49, that ibis work was completed in 15-25 (" Ausserdern hatte Riese 15
-25

zu Annaberg eine ' Arithmetic' vollendet, welche aber erst 1550 in Leipzig in 4to

unter dem '! itel edieret wurde : Kechenung nach des lenge . . .") Berlet does not
give any authority for the statement, and I think it safer to assign to this Arith-

metic the date of "its publication. I he first part (p, 1) is headed " Rechnung aufE

(hn Linien nach der lenge dutch Adam Kiesen im M.D.L.", and the second part

(p. 47'j " Rechnung nach der lenge mit der Feder. Dutch Adam Riesen im 1550 ".
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Rechnung (§ 51) with the Exempel Biidilin (§ 72) added, hut

more complete. Many difficult questions are carefully worked

out, and the processes fully explained. As an arithmetic it is

excellent and much superior to any of its predecessors. It

shows that Riese's enduring reputation as a * Rechenmeister

'

was well deserved.*

The signs + and — are used in the rule of false and are

explained as plus and minus on p. 1G7 ("mit dein zeichen +
das ist plus . . . mit dem zeichen — das ist minus"). The
sign — had heen previously used, hut not the sign +. Both
+ and — are used in the concluding portion of the hook,

which relates to gauging. The sign — first occurs on p. 114

in '4 — 1' mentioned in the next section (p. 46). The word
minus occurs frequently all through the hook, and occasion-

ally the word weniger. The word plus occurs twice before

the rule of false.

The first occurrence of either minus or weniger is in the

rule for the sum of a geometrical progression (p. 13') where,

the denominator is described as the ' ubertretung weniger 1

'

(ubertretung being the common ratio). It next occurs in

question 108, which begins " Joiner kaufft drei schock hiiner

weniger 13 . . .
" This question occurs twice,f and in both

solutions the word minus is used. In the first solution (p. 22')

Riese gives as a direction "Nim ah das minus bleiben 1G7 "

(which is the first use of minus in the book), and in the

second solution (p. 82') he places 13 under 180 in order to

subtract it, and writes minus by its side. In question 118

(p. 23') he gives the weight of a sack of pepper as ' 3 ct minus
17 lb ', and minus is used in many other questions afterwards.

On p. 127', when he has to multiply 7n 3* ort by 29 he

takes the money to be '8fl — £ ', multiplies the 8 florins by

29, and subtracts \ of 29 florins. % On p. 137' he multiplies

in a similar manner '3 minus \ fl ' by 19^ and on p. 138

'2-ifl' by 210f. On p. 139 in an example where the

* Berlet (I.e. p. vii) says that it was generally lield that anyone who had com-
pletely worked through ltiese's Fraction should be regarded as a master of calcu-

lation. The t'ractica extends from p. 10G to p. 182, and contains so many difficult

questions of various kinds that this opinion was fully justified.

t A great many of the examples occur twice, as pp. 1—47 relate to calculation

'auff den Linien ' (by counters) and the subsequent portion to calculation "mit
den Feder': and the examples in question are solved by botli methods. This
also applies to the rule for the summation of a geometrical progression which
occurs on p. 53 as well as on p. 15'. 1 shall refer to questions by their numbers,
adding the page or pages when it seems desirable. As t jm-st ions which occur twice
are not always identical either in wording or spelling or iu the directions for their

solution, the reference sometimes applies to only one version of the question.

+ He also obtains the result by multiplying 7 fl ii^ oit by 4 and 7 and adding
the original quantity, but by an error this is indicated (at the side] by ' 4 ', ' 7 - 1

'

instead of '4 ', '7 vnd 1'.
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weights are ' 3 ct minus 11 lb vnd 2]-ct 5 lbs ' and the ' tara'
is 19 lb, Riese writes down ' 300 — 11 ' and places 255 under
300 and 19 under 11 ; he thus obtains by addition 555 and 30
and, by subtraction, 525 as his multiplier.

On p. 124 he finds a fourth proportional to 8, 3 H 5 gr 2$,

and 6, by subtracting from the middle term j- of itself, writing

8 minus 2 at the side to indicate that lie treats 6 as 8 — 2.

Similarly on the next page (p. 124'), in finding a fourth

proportional to 6, 5 and 17, he subtracts from 17 its sixth

part and writes '6 — 1' as indicating the process: and on
p. 125, in finding a fourth proportional to 5 lb, 9 fl 7 gr, and
9 lb, he doubles 9 fl 7gr and subtracts one fifth of it, indicating

the process by ' 10 — 1 '. In another example, on p. 126, he
treats 29 as 30 — 1, which he writes at the side. On p. 128,
where he has to multiply 17 gr by 37, he multiplies by 42
and subtracts 5 times 17, writing '42 — 5' at the side. His
object here in multiplying by 42 is for convenience in reducing
to florins, as there are 21 groschen in a florin: and on pp.
.128-130 he treats 19gr, 18gr, 39gr, 14gr, 40gr as ' 1 fl-2gr',

' 1 fl — 3 gr % 2fl-3gr\ 'lfl-7gr', ' 2 fl minus 2 gr.' On
p. 131', where he has to multiply 17 gr by 39], he multiplies
' 2 fl minus 2\ gr ' by 17, and on p. 132 he replaces 4l| by
' 2 fl minus \ gr'.*

§ 62. The word plus first occurs on p. 159 in the solution of
the question " Fiinff haben zu teilen 124^ fl dem ersten geburn

§ — 12 fl, dem andern \ vnd 10 fl, dem dritten -| minus 24 fl,

dem vierden | vnd 6 fl, vnd dem funfften | minus 7 fl wieuil

gebiirt jedem ". Riese adds the minus numbers which
amount to 43 and subtracts 16 leaving 27 which added to

1241 gives 15l]fl as the sum to be divided in the proportions

|, \, -f, |, f . His words are " Summir das minus wirt 43
desgleichen das da mehr ist als 16 nim von einander bleibeu
27 die gib zu dem gelt, das sie zu teiln haben als 124] wirt

151] ". Dividing 151]- in the proportions 80, 30, 100, 45, 48
he obtains 40, 15, 50, 22], 24, from which he derives the
results '40-12', '15 vnd 10', '50-24', '22.]- vnd 6', '24-7'
(the direction being 'das minus nim herab, das plus gib
hinzu wie jedem vorzeichent '), that is, 28 fl, 25 fl, 26 fl,

28 • fl, 17 fl.

Thus, in the data, quantities to be added and subtracted

are indicated by 'vnd' and 'minus' or' — '; in the solution

the sum of the former is designated 'das da mehr ist' and
4 das plus', and the sum of the latter is twice designated 'das
minus '.

The second occurrence of plus is on p. 162 in the direction

"die andern mach durch plus vnd minus".

* Misprinted ' 2 fl minud } eln '.
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A peculiarity of the work, wliich I have not found in

any previous Arithmetic, is that the sign — or the word
minus is used in the actual working out of examples. Thus
on p. 117 he shows how in order to divide by 47, we may
divide by 48 [i.e. by the factors 6 and 8) and deduce the

required result, and he indicates the process by writing ' 6
'

and ' 8 minus 1
' at the side*

On p. 114, in order to multiply by 23, he multiplies by 6

and 4 and subtracts the original quantity: this he describes

as ' Setz 6 mal 4 minus 1 ', and he indicates the operations by
writing '6' and '4 — l' by the side of the two multiplications.

On the next page, to multiply by 43 he multiplies by 5 and
9 and subtracts twice the original quantity, writing at the

side '5' and '9 minus 2'. On p. 132', to multiply by 39|,
lie multiplies by 5 and 8 and then subtracts | of the original

quantity, denoting the operations by ' 5 ' and '8 minus 1^ ',t

and on p. 133' in multiplying by 23^ he indicates the operations

by ' 4
"" and ' 6 minus |

'.

StifeVs edition of Rudolff's Algebra (1553), § 63.

§63. In 16° (Stifel's edition of Rudolff's Algebra, 1553)

the signs + and — are used as in the original edition (1525),

i.e. very freely in the whole of the algebra and not at all

in the arithmetic which precedes it.

In his appendix to Chapter V., in which Uudolff explains

the cossic signs and the signs + and — , Stifel remarks that

Rudolff's algorithm of the cossic signs includes three algorithms,

viz. of ordinary numbers, of the cossic numbers, and of +
and — . Of the third algorithm he says that it is particularly

powerful and happy (lustige) not only in the cossic numbers
and the surd numbers but in all kinds of numbers, as, for

instance, in ordinary numbers or fractions ("So kompt nu der

Algorithmus der zweyen zeychen + vnd — dareyn. Das ist

ein sonderliche gwaltige vnd lustige sach, nicht allein bey

den Cossichen zalen, wie der vorgehnde Algorithmus meldet.

Audi nicht alleyn bey den surdischen zalen, wie der nach-

folgende Algorithmus dess zehenden Capitels wirt melden,

sondern bey allerley zalen. Als bey zalen vnd Briiehen

* The general process which Riese here applies in an example may be explained

as follows : if it is required to divide a number n by a divisor p, and if p +« (having

factors) is a more convenient divisor, then let q be the quotient and r the re-

mainder, when n is divided by p + a : let aq + r be formed and divided by p, giving
q' as quotient and r' as remainder : then the quotient when n is divided by p is

q + q' and the remainder r'. The process depends upon the equations

x = (p+ a) q + r

-

pq + aq + r =pq +pq' + r'-p {q + q') + »•'.

t i.e. 8 uiiniiB 1J virtheil, a virtheil being J.



+ and — and on the early German arithmeticians. 47

gcmeyner benennung etc.", p. 71). Stifel tlien gives the

rule of signs for addition, subtraction, multiplication, and
division.*

Questions in the sixteen books in which — or its

equivalent occurs in the data, §§ 64—75.

Introductory remarks, § 64.

§ 64. It is evident from the account which has just been

given of the occurrence of the signs + and — in these sixteen

books that they at once became a part of algebraical notation,

but that they were very sparingly applied to arithmetic

except in the rule of false (which is more closely allied to

algebra than to arithmetic and in which the signs do not

denote addition and subtraction); but before considering

further the uses of these signs it is desirable to examine
the numerous questions of the same type as Widman's fig

and pepper questions (§§11 and 16) which occur in these

books: and to this I now proceed.

As mentioned in § 38 this investigation is of interest, as it

should throw light on the origin of these questions, i.e.

whether they were derived from actual mercantile transactions,

or were merely invented by arithmeticians as exercises in

calculation.

Boschensteyn (1514), § 65.

§ 65. Boschensteyn (1514) has no question in which minus
occurs, but he has commercial questions involving more than
the simple rule of three. One of these relates to tara, though
the name is not used, and the other is given under Regula

fusti. In the first (C iiii) a person buys 3 barrels of oil

weighing 345 lbs, 362 lbs, 351 lbs, and he takes off for the

wood 11 lbs on the centner (schlecht ab fur das holtz 1 lib am ct)

and sells one centner pure (lauter) for 6 fl l|-ort. The
solution shows that the meaning is that he sells 111 lbs for

6£fl. In the question on the Regula fusti (C vi') he buys
27 ct 81 lbs of cloves and pays 11 ss 3 hlr for 1 lb of the pure
cloves, and 21 heller for 1 lb of the fusti (stalks), and 100 lbs

contain (lialten) 13 lbs of fusti.*

* For the add.tion and subtraction of numbers with unlike signs his rule is that
in addition the smaller number is to be taken from the larger and in subtraction
the numbers are to be added, and that the sign to be affixed is given by the syllable

Go , viz that in addition the sign is that of the greater (Grosser) number, and in
subtraction it is that of the upper (Ober) number (pp. 73, 73').

* This question is taken from Widman, p. 93' (see §19), 2ss — 3hlr being
replaced by 21 hlr. The same question also occurs in Peer, Fl', where also the
price of the fusti is given as 21 hlr (see §C9).
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Grammateus (1518 and 1521), § 66.

§66. In 4° and 5° (Grammateus, 1518 and 1521) under
Ihe heading Regula fusti there is the question " Ich hab kaufft

6 cetner pt'effer ye 1. cetner lauter vmb. 50. fl. R hielt. 1.

centner tara. 5. lb. ist die frag wie tewr koinbt der pt'effer".*

In the solution the 30 lbs tara is subtracted from the 6 centners,

leaving 5 cent. 70 lbs. This question occurs on Dvi' of 4°

(the arithmetic and algebra) and on C i' of 5° (the arithmetic).

This is the earliest use of tara I have met with in a German
book (see § 92). There is no other commercial question of

any importance; the word minus is used in 4° (§§45,46),
but not in 5°.

Biese (1525), § 67.

§ 67. In 6° (Riese, 1525) there are three questions in-

volving weniger or minus. The first (C viii) is "Item eyner

kauff ein schogk hiiuer weniger 9 halb zu 14 vnd halb zu 15

pfen : facit 2 floren 19grosz: 7 pfen : vnd ein heller". Here
a schock is 60, so that the number of fowls is 51.

The next question (D vi'), which is of the same type as

Widman's fig question, is as follows: "Item vier lagel mit

Seyfen wegen 3 cen : minus 13 pfundt, 4 cent: ein pfundt,

4 cen: minus 28 pfundt vnd 3 cen: minus 11 pt'undt tara vff

ein cent: 10 pt'undt vnnd kost ein pt'undt lauter 16 pfen: ein

lialben facit 80 flo : 6 gro : 3 pfen : den flo: fur 21grosz: vnd

ein gros: fur 12 pfen ".f
There is also a similar example on E vii', in which " 3

Vhesser mit schmer wege 4 cen. minus 13 pfundt 3 cent. 28

pfundt vnd 5 cen. 11 pfu".

Thus in Riese we have the first examples (in any of the

books mentioned) in which centners and lbs are connected by

the word minus, but minus is not used in connection with

money. See, however, § 76.

Another question (E v') may be mentioned because of the

use of mer for vnd. " lte eyner kaufft 43 pfundt Saflfran das

pfu: fur 3 flo: 10 ss mer 58 pfundt JScgelein ein pfu: fur 16 ss

vii 75 pfundt ingwer . .
."

* D vi' in 4° (from which I quote the question) and C i' in 5°.

t The word tara is first used on Diiii' in the question "Item ein stumpff
Saffran wigfc38 pfundt 1(> lot tara 'J lot vnd man gibt :< pfunt fur 83 floren facit

91 floren 4 schil. heller $± teyl ". In the solution it is explained that the tara is

to be subtracted from 38 lbs lti lot, leaving 38 lbs 7 lot.

J This use of mer occurs frequently in Kudolff (1526) and subsequent books.
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Rudolf (1526), §68.

§ 68. In 8° (Rudolff, 1526) the first use of minus is in the

question (I 3') " Item wall ^ von | aus | ainer eln, costet 2 flo.

min9
\ von \ ains florens, was weren werdt 25 eln 2'3*5'

facit 159flo. 5ss. ILSMj". The question is: if | x f x § of an

ell costs (2 — i x l) fl what do (25 +^ + \ + i) ells costs, i.e. if

^g of an ell cost l{-| florins, how much do 26^ ells cost?

It is clear that this question could not have arisen in the

way of trade, and it must have been constructed merely as an
exercise in fractions and the rule of three.

The next question, on the next page, I 4, is of the same
class. " Item wann f von 10. weren 15 min9

^ von ^ aus 26.

was weren f von 18. Facit 2 if ", i.e.
2
3
° :

3
3
2

: : \] :
A£i.

When minus first occurs between concrete quantities it is

in connection with money, viz. (I 4') in the question "Item
1 stumpf saffran wigt 37lb|. thara 9 lot fur den stumpf,

costen je 3 lb |. 20 flo. min 9
1 ort. facit 226 flo. 3 ss. 6h. £ ".

This is the first question in which thara occurs, and it is

.explained that it is to be subtracted, and what is left is saffron.

[There are 32 lot in a lb, so that the question amounts to

finding the cost of 37 lb 7 lot if %\ lb cost 19|fl.]

In two other questions on I 4', which relate to skins, the

price per 1000 is given as '60 flo. min9
|ort'. After a question

on I 5, in which weights are given in centners and lbs, Rudolff

gives one in which minus occurs, viz. "Item 3 trucken mit

saiffen, wegen 3 cen. mi9
12 lb. 4 eeii. 14 lb, 5 ceiT. min9

14 lb.

thara fur holtz 10 lb auf 1 ceil..." There is a similar question

relating to honey on I 5', and on 1 6 there is a question in which
a florin is to be taken to be 8 ss minus 63 (de flo. gerechnet

fur 8ss mi9
6$.), i.e. the florin is to be 7 shillings and 24 pence.

In four other questions sums of money are given as ' 2 flo.

min 9 lort^' (1 8'), ' 4 ducaten min9
7 ss ', '14 horn gulden

min 9
2 ss ' (K 4'), ' 50 flo. min9

l'ort ' (L 2).

Peer (1527), §§ 69-70.

§ 69. 9° (Peer, 1527) has questions of the same kind as

Rudolff, but he uses weniger and minder instead of minus.

In the first question on D 1 a person buys 3 sacks of

pepper " der erst wigt 1 centner 43 lb. der ander wigt 1 cent.

74 lb. der drit wigt 2 ce. weniger 13 lb "*, &c.

In an example on D 3' three barrels of honey weigh "4 c.

40 lb. 5 c. minder 22 lb. 3 c. minder 8 lb. thara auff 1 c 10 lb."

* Further on in the book (1 5) this question is worked out in detail as a specimen
of ' Die Welsch practigkh '.

VOL. LI. E
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On D 7 there is a much more elaborate question of the

same kind. " Item einer kaufft 12 lagel saiffen, die erst die

wigt 3041b.1,, die tinder wigt 400lb. vveuiger 15lb| drit 312lb£.

viert 2981b |. fiinft 5001b weniger 27lb \. sechst 300lb. minder

3lb. Siebet 430 lb 1 achtist 398 lb \. Neunt 400 lb. weniger

35 lb. zelient 390 1b. aylfft 289 lb. zwolfft 400 lb. weuiger

17lb.l. Thara fur 1 lagel 20. J- lb kost 1 cen. 4 fl. 7 ss. frag

was dfe 12 lagel koste. F. 198fl
-

6ss ISB^".

§ 70. There is another question of the same kind on D 7',

in which 7 barrels of soap weigh ' 340 lb ^ ', ' 500 lb weniger

13lb,£\ '435lb.i ', '4001b weniger lllbf.',
l 2101b j.', '300lb.',

'403lb|.'; and on Dl' there is a question in which minder

is applied to money, viz. "Item 1 sack pfeffer wigt 2 cent. ^
weniger 9 lb. vii kost 1 lb 8 ss mlder 3 h. vll geet ab 3 lb. |.

F. 91 fl 18 ss 8l)J". Here the sack of pepper weighs 241 lb

and 1 lb costs 7 ss 9 h and the tara for the sack is 3^ lb.

On D 7 minder is again applied to money in a question in

which the price of lib is ' 2fl minder ijort'; and this occurs

again in a question on G 4' in which mer is used for and:

viz. a person buys "33. zobel, je 1 zimer vrii 27 fl. mer 265

ham pelg, ein hundert vmb 7fl. minder jort, mer 735lasset..."

It will be noticed that in the questions on D7 (quoted

in § 69) and D l' (quoted in the present section) both weniger

and minder are used in the same question. On D5 Peer has

a question about a shock of fowls similar to Riese's. " Ite

1 schock hunner weniger 7 hon, halb zu 12 vnd halb zu 13$".

On D4 and D 4' he takes Rudolff's questions about skins,

merely changing the price per 1000 from '60flo. min9
Joi't'

to '60fl. weniger l^ort'.

The following two questions may be noticed because

juxtaposition of the fractions denotes addition: they are

consecutive questions, both on 1) 6'.

"Item einer kauft 10 lb pfeffer vmb 8 fl 1 { I * ains fl.

wie theuer kombt if lb. Facit 1 fl 4 ss 15$ 1 h.|" and "Item
einer kaufft 1 e. alaun fiir 5 fl | | j

1

,;
eins fl. wie theur koine

4 c. ^. Facit 29 fl. 1 ss 7$ 1 heller"".

The occurrence in Peer of Widman's Regula fasti question

(about the purchase of 27 ct 81 lb of cloves) has been already

mentioned in the note to § 65 (Boschensteyn).

Apianus (1527), § 71.

§ 71. As mentioned in § 54 Apianus gives a question like

Widman's tig question in which + and - are used and detined.
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This question, which occurs on E vi', is: "Item einer kaufft

9 Lagel ol wegen wie hernach volgt. Kost let lauter 14 tl

3ss 143, vnd thara vor das holtz an jtlichein Vass abgesehlagen

19 lb. 1st die frag was ist das oil wert, gerechent auff Sehwarze
Miintz.
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BiicMe, which is appended to the 1561 edition of the Kiinst-

liche Eecknung* is a reprint, and it is from this edition that

1 quote.

Among these questions I have noted the following uses of

minus. The number prefixed is that of the question. f (95)
' 18 fl. minus ± ort

' ;
(107) ' 7 cen. minus 12 lb.'

;
(120) ' 12 fl.

minus 1 orth.'; (125) '3 cen minus 5 lb'; (126) ' 2 fl minus

i ort.'
;
(I27)'eyiner 2. line 9 minus 2 mass'; '2 Eymer,

minus 1\. Jme'; and ' 2 fl minus 3 ss.' [an eymer is 16 Ime
and an line is 4 mass]; (157) ' 17 eimer, minus *.'; (165) '2celi

minus 6 lb.'; (167) '23 ceii minus 3lb'; '29 ceil minus 4 lb.';

(258) '1 neuntel, minus 1 Kukis.' [a kukis is ^ of a neuntel];

(271) ' 10 fl minus \ ort'.

Two questions seem worth quoting in full.

(109) "Vier triimer Saniat, halten eln Z\ 4§.2l.3i.je §
aus 7| Eln, pro 19 fl. | vnd \ eins fl. minus \ von £ aus 10| fl.

Wieuil ist der SaTnat aller werd, audi wie tlieur die Eln ".

This question, which is clearly merely an exercise in

fractions, is, that if y of an ell costs (19 + l + l~ |xf x 9
g
8

) fl,

that is \
l florins, what do 13§g ells cost?f

(196) " Einer hat Ever kaufft, gibt mir solchen bericht,

das 21 eyer, vnd 2 Putsehiiudel, gelten 14 Wiener $ minus

4^ ayr. 1st nun ferner die frag, wieuil eyr pro 1 kreutz.

kommen, gelten 3 Putsehiiudel 1 kreutzer, oder 4 Wiener $.

Facit 9 ayr pro 1 kreutzer ".§

This question is of the same type as Widman's egg question

:

2 Putsehiiudel are equal to 2| Wiener $, and therefore the

question is equivalent to 21 eyer+ 2|#=14$ — 4\ eyer, whence
25^ eyer are worth ll-§#, and 1 ey cost 7j of 1$, that is, ^ of a

kreutzer.

The word weniger is used in (34) "Ein schock Huner
weniger 3, das par pro 17$. vnd ist 60. 1 schock. Facit 2 fl

ss 43 1 hr."

* "Kiintsliche rechnung mit der ziffer vnd mit den zalpfenningen sampt der
Wellischen Fractica, vnd allerley vortheil auff die Regel De Tri. Item verglei-

chung manclieiley Gewicht, Elnmass, Miintz, &c. Auff etliche Land vnd Stett.

Gemehret mit 2 lJ3. Exempeln, von manclieiley Kauffhendeln, mit erklarung, wie
dieselben znmachen vnd inn die Regel zu setzen sein. Auffs new widerumb Heis^ig

vbersehen, vnd an vil orten gebessert. A lies durch Christoffen Iludolff in Wien
verfertiget. 1501". The colophon is " Getruclct zu Niiimbeig, durch Christoff
Heussler. 1561".

t In the 1561 edition (which is the only one I have seen) the questions are
numbered, and I refer to them by their numbers.

X The question occurs under the title "Exempel zu sonderer vbung der Species
in Bi iichen".

§ It is stated in question 179 that a rutscbiindel is a white Bohemian penny.
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Albert (1541), § 73.

§ 73. In 11° (Albert, 1541) there are a number of questions

in which weights and amounts of money are expressed by
differences. The first use of the sign is on D viii' in the

question " Item 1 Tlionne Putter vmb 15 fl 9 gr, Wie eiu

pfund? Facit 1 gr 6-9 llelt 2 centner—4 pfund ". Here the

barrel holds 216 lb of butter and the question is to find a

fourth proportional to 216, 324, 1.

The next question involving — , which occurs on I iii, is

"Item 12 cent. 4 stein—6 pfund Talg will einer verkeuffen,

den cent vmb 4 fl 12 gr, Wieuiel ist die Suma ". In a question

on I vi the weights are '3 cent.—7 pfund' and '4 centner 19

pfund '; and in another on L vi' they are ' 2 cent. 16 pfund ',

' 3 cent.— 7 pfund ', ' 4 cent. 35 pfund '. In a question on I vii',

in which the weights do not involve the sign — , the cost of a

centner is ' 7—
-g- fl '. Jn other questions on I vii', L viii, 1 viii'

the weights '6 et-13^1b', '4 ct—5i pfund', '2 cent—9lbf ' occur

in conjunction with weights in which the lbs are additive, i.e.

in which no sign is used.

The negative sign occurs in connection with money in

'65fl-3fT (Kvii), '3fl-lort' (Li), '3 fl-l ort' (Li), '7fl-l'

(L i'), ' 9 fl-3i ort ' (L iii'), '8 fl 3 ort-7 heller' (Liii'), ' 9 fl-.1,

'

(Lv'), '17grJr-23'(Miv), ' 5-J-fl ' (M vii').

In several questions the word mehr is used for vnd, eg. on
K ii, where a person buys "2721 schwartze Seelandisehe Zma-
schen...Mehr, 3603 Denische Lambsel...Mehr, 399 Denische

Schorling..." and on Kiii where a question begins with Mehr,

viz. "Mehr kaufft er, 918. ..Marder...Mehr 1139 Lasset..."

Spenlin (1546), § 74.

§ 74. In 14° (Spenlin, 1546) there are three questions in

which minder is used in expressing money or weights : thus

on p. xlvii' a price is given as ' 9. fl minder 2-£ orth ', on p. xlviii

the weights of 5 barrels of oil are given as'3.cent 3.1b', '2. cent

54.1b',
l 4.cent minder 11.1b',

l 2.cent 15.1b', and ' 3.cent 28.1b':

and on the next page 3 ' thunnen ' of honey weigh ' 1. cent

74. lb.', ' 2. cent 21. lb ', and ' 3. cent minder 6. lb.'

Riese (1550), § 75.

§ 75. In 15° (Riese's Rechmung nach der lenge, 1550) there

are a great number of questions of the same kind as those

which have just been described under liudolff, in which minus
generally occurs, though weniger is sometimes used.

E2



54 Dr. Glaisher, On the early history of the signs

In question 118 (pp. 23' and 83') two sacks of pepper weigh
"Set minus 17 lb, vnd 2 ct 19 lb, tara fur die seek 5 lb..."

and in describing the working on p. 23' liiese says " iSummir,

Macli ct zu pfunt, Nim ab das minus vnd tara..." i.e. he sums
the positive 11), which amount to 519 lb, and subtracts the sum
of the negative 11) and the tara, which comes to 22 lb, leaving

497 lb as the weight. This is his usual procedure, and the

words 'Nim ab das tara vnd minus' or 'Nim ab das minus
vnd tara' occur several times, e.g. in questions 122, 123, 124,

125, 130.

In question 119 (pp. 24 and 83') he gives the cost of 1 lb

of saffron as ' 4 fl minus 1^ ort ' on p. 24, and as ' 4 fl weniger
l£ ort' on p. 83'; and in question 128 the cost is ' 4 fl minus

\ ort' on p. 25, and ' 4 fl weniger ^ ort' on p. 84'. These
are the first questions in which minus or weniger occurs in

connection with money. Minus is also used to connect money
in question 123, and it connects centners and lbs in questions

118,122,123,124,125, 127,130,131,132,173. In questions 131

and 132 it occurs in two of the weights. In only one question

(123) is it used both for weight and money (as in Widman's
pepper question).

On p. 139 a weight is given as ' 3 ct minus 11 lb*, and on

p. 103' as 'llct minus 4 lb'; and on pp. 137' and 138 prices

are given as ' 3 fl minus ^ ort ' and ' 2 fl minus ^ ort '.

The word minus or the sign — is also used to connect

quantities of the same denomination as e.g. in ' 8\ minus 7.
1,'

(p. 153), -7lfl-3' (p. 158'), '40-12', &e. (p. 159), and the

word weniger is used in a similar way on p. 1G0.

The Algorismus of Ambrosias Lacher de Merspurq
(1506-1510), §§ 76-78.

§ 76. After I had written the preceding account of the

sixteen books, whose titles were given in § 42, I met with

a German Arithmetic containing complicated commercial

questions of the same type as in Widman, which, though
uudated, was certainly published before 1510 (see § 77). It

will be seen that some of the questions involve minus in the data.

The title of the book is " Algorithmus Mercatorum varijs

propositionibus eorudem cotractibus inseruientibus multu de-

coratus. per magisirum Ambrosium Lacher de Merspurg.

Matliematicum in Studio nouo Franckfordiano *'.* It consists

* Below the title is it large coat of arms, which is that of Dietrich von Biilow,
i I.rims (near Frankfort a. 0). He was appointed Bishop of Lebus in

I 190 and participated in the foundation of the University of Frankfort in 150i>, of
which he was the first Chancellor.
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of 14 quarto leaves A I—Avi, Bl—B4, Ci—Civ, and is printed

in double columns. The first seven pages and part ot the

eighth (Ai'~Av) are a reprint of Peurbach's Algorismua

(§ 126) up to the end of De Dioisione. Lacher then proceeds

"Jam sequitur pulcra et multum vtilis applicatio predietorum

ad varium mercatorum vsum per multas propositiones hue

accomodatas ". Then follows the paragraph about the rule

of three, which appears sometimes as an addition to Peurbach's

Algorismus and sometimes as a part of it. After this comes

more explanation of the rule, followed by a short account of

fractions (which were not included in Peurbach's Algorismus),

and then he at once proceeds to give 18 examples with their

results.

The fifth of these examples is: if a cantarus of wine costs

5 denarii how much can be bought for 3 florins minus 3 denarii

(3 fl min9
3 dn) ? The ninth example also involves money

expressed by means of minus. This question is: a person

buys 525 oxen, paying for each pair 9 fl minus 8 gr (das seper

pro duobus paribus 9 fl min9
8 gr) : his expenses are 158 fl

-18 gr and he wishes to gain 268 fl, what must the price of

each ox be?
The fifteenth question is formed exactly on the model of

Widman's fig question (§ 11), except that the words plus and

minus are used instead of + and — . This question is: "lie

quida emit 6 lageas fie
9
das pro quolibet ct 4 fl poderatque vt

ordo edocebit subscript
9

,
queritur de suma ioeius.

Lagn
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third ' 1 ct minus 10 lb': lie pays 8 fl 24 gr for each centner,

and 14 lb is deducted (defalcatur) tor the weight of the baskets.

Here, as in other places where a stein occurs (as e.g. in § 56),

the centner is 110 lb and the stein 22 lb, so that the net weight,

after deducting the weight of the baskets, is 278 lb. This at

8^ fl the centner gives 22 fl 3 gr 5^-d, which is Lacher's result.

In the next question a weight is given as ' 13 ct plus 18 lb'.

In the next and last example of the series a person buys 3lagenae

of olive oil, of which the first weighs ' 2 ct pi
9

18 lb.', the

second ' 3ct min9
33lb ', and the third ' 3ct & 4 lb ', from which

20 lb in each centner is to be deducted for the weight of the

jars (resecatur de quolibet cetenario. 20 lb ratioe vasis), and
let costs 18 fl. The result in this question shows that the

centner is to be 110 lb, so that the lagenae weigh 869 lb, from
which A- is to be deducted as the weight of the jars, leaving

711 lb. This at 18 fl for 110 lb gives 116^0 fl, which is Lacher's

result. This question closely resembles Widman's oil question.

(§ 18, p. 12), in which the weights were '2ct 18 lb', '3ct-32lb',

and ' 3 ct 4- 5 lb ', and the weight of the wood of the barrels

was given as 9 lb on each centner.

After these questions there are tables of weights and
measures, and then a number of practical commercial questions

relating to the exchange of money, the conversion of weights,

partnerships, barter, &c. On C i' he gives two questions

which involve fusti. In the first of these a person buys at

Venice 1725 lb of cloves, paying 12 ss for lib of the [pure]

cloves and 2 ss for lib of the fusti (fusti vel impuri), each

centner containing 15 lb of fusti : in the second, a person buys

at Nuremberg 6 ct 95 lb of saffron, paying 340 fl for 1 ct, and
each centner contains 20 lb of fusti. The result shows that in

this question the fusti is not paid for. In each of these questions

the centner is 100 lb.

§ 77. Ambrosius Lacher, of Mersburg on the Lake of

Constance, the writer of the Algorithmus Mercatorum, began
his studies at Leipzig in 1488. and became a Bachelor

there in 1490. He matriculated at Wittenberg in 1502 and
became Master in 1504. On the foundation of the University

of Frankfort on the Oder in 1506 he came there as teacher in

mathematical studies and established a private printing press

in which he printed the books he required for his lectures.

These were: in 1506, an edition of the first four books of

Euclid with Campanus's commentary: in 1508 " Arithmetica

Muris...nuper bene reuisa lectaque ordinarie atque impressa

per Magistrura Ambrosium Lacher de merspurgk. Mathe-
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maticum elc. In studio Frankfortiano Anno 1508. die 26

Junij, studij vero pre fat i anno 3." and " Epytoma Johannis

de Muris in Musicam Boeeii . . . diligenter reuisa. ordinarie

lecta atque impressa in studio nouo Frankfordiano Anno salutis

1508. studii vero prefati 3. in die sancti Galli "
;
and in 1511

"Tabule Resolute de motibus Planetaruin..." The Algorithm

onus Mercatorum has no date, but must have been printed

before 1510, for in that year a second edition was published at

Leipzig under the title "Algorithmus mercatorum Magistri

Ambrosij Laclier de Merspurg Mathematici de integro et

fracto numero : ac varijs proposition! bus eorundem eontractibus

inseruientibus. bene emendatus per Baccalaureum Bartholo-

ineuin Schoebel In florentissimo Gvmnasio Lipssensi ad mone-
tam nostram nuper recalculatus. Impressum Lyptzigk per

Baccalaureum Martinum Herbipolensem Anno domini 1510."

Thus the original work must have been printed before 1510,

and it could not have been printed before 1506, when Laeher
set up his press.

Laclier was rector of the University of Frankfort a. O. in

1516. He then studied medicine, and became Bachelor and

Licentiate of Medicine in 1522, but he remained in the Arts'

faculty till his death in 1540.*

§ 78. The similarity of the questions in the Algorithmus

to those of Widinan is explained by the fact that Laeher was

at Leipzig in 1488-89 when Widinan was lecturing and when
his Rechenung was published. There can, I think, be no doubt

that for questions such as those relating to figs, oil, fusti, &c,
and probably for others, Laeher was indebted to Widman's
teaching or to his book. It is interesting to find these com-

mercial questions appended to Peurbach's Algorismus and a

subject of University instruction. Laeher wrote in Latin, and

I have met with no other strictly mercantile Arithmetic of this

period which is in Latin. He does not mention Widman;

* The facts of Lacher's life, as well as the titles of the books printed by him
(except the Algorithmus) and of the second edition of the Algorithmus, have been

taken from a paper by Dr. Gustav Baucb, " Drucke von Frankfurt a. O." in vol. xv.

(1898) of the CentraIblatt fur Bibliotkehwesen (pp. 241-260). Jianch gives a list

of all the books printed at Frankfort a. O. up to 15'JS, with an account of the

various printers and documents relating to them. Of Lacher's printing he says

that it sometimes gives the impression of amateur work. Lacher's books seem to

be very scarce. Bauch states that there is a copy of the Algorithmus in the Royal

Library of Berlin, ai d of the Leipzig edition in the ilof u. Staats Library at Munich.
'I lie copy which I have used is in the Library of Trinity College, Cambridge.

Laeher is not mentioned in Rata Arithmttica. Panzer and Kastner mention the

Euclid. The latter gives an account of it on pp. 30-J-30-1 of vol. i. of his Geschichte

der Mathematik (Gottingen, 1796). He there quotes Lacher's address to the reader,

which begins "Atnbrosius Laeher de Merspurgk Constanci dioce>is Arciutn

liberalium magister sucreque Muthematice studii nostri ordinaiius candido lectori ".
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nor do any of the writers of the sixteen books described in

§§ 41—75, excepting only Riese, in the dedication of his

manuscript Coss (§ 49). The Algorithmic affords no evidence

of Lacher's having been acquainted with algebra. He used

the words plus and minus, but then he wrote in Latin: still

he might have used et in place of plus. I do not think that

any inference can be drawn from his not using + and — . He
may have thought these signs unnecessary in an Arithmetic,

or he may not have had access to the necessary type. In the

Algorithmus a number of initial letters at the beginning of

paragraphs are missing, although space is left for them: and
this was presumably for want of type.*

The signs + and —
, § 79.

§ 79. The signs + and — are freely used in all the Algebras,

viz. in 4° (Grammateus, 1518); 7° (Rudolff, 1525); 12° (Stifel,

Ar. Int. 1544); 13° (Stifel, Dent. Ar. 1545); and also in Riese's

manuscript Algebra (1524).

In 4° (Grammateus, 1518) they are defined as vnnd and

mynnder; in 7° (Rudolff, 1525) as plus and minus; in 13°

(Stifel, Deut. Ar. 1545) as ' vnd oder iner ', and ' weniger

oder minder'. They are not defined in 12° (Stifel, 1544),

on their first occurrence in the book, nor in Riese's manu-
script Algebra.

In the Arithmetics the signs + and — are used in the rule

of false whenever that rule is given, viz. in the arithmetical

portion of 4° (Grammateus, 1518); in 6° (Riese, 1525), whore

they are called plus and minus; in 10° (Apianus, 1527), where
— is called minus, but no word is given as the equivalent of +

;

in 11° (Albert, 1541), where they are called mehr and weniger;

in 14° (Spenlin, 1546), where no equivalent words are given;

and in 15° (Riese, 1550), where they are called plus and minus.

In 5° (Grammateus, 1521), 8° (Rudolff, Arithmetic, 1526
,

9° (Peer, 1527) they are not used at all. Except in the rule

of false they are not used in the arithmetical portion of 4°

(Grammateus, 1518) or 6° (Riese, 1525). Jn Apianus they

are used only in the question which is almost exactly copied

from Widman's fig question (§ 71). In 11° (Albert, 1541) the

sign — is freely used. In 12° (Stifel, Ar. Int., 1544) the words

plus and minus are used throughout in the arithmetic (lib. i)

and in the rule of false (appendix to lib. i) excepting in the

one case 1, 3 — 1, 3, 3 + 1, <&c, mentioned ill § 57, but + and —
are freely used in the algebra (lib. ii and iii).

* The omission of initial letters in Lacher's Euclid is mentioned by Kastner
in his aecount of it referred to in the preceding note.
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The words minus and plus, § 80.

§ 80. In the Arithmetics the word minus (besides its use

in the. rule of false) was generally used, as also were the words
minder and weniger. We may suppose that its meaning was
well known, as it is never explained. It occurs very early in

the arithmetical portion of 4° (Grammateus, 1518) in the

explanation of multiplication (§ 46). It does not occur in 5°

(Grammateus, 1521), but it is used in 6° (Riese, 1525) and in

8° (Rudolff, 1526). In 10° (Apianus, 1527) minus occurs once.

In 11° (Albert, 1541) the sign — and not the word minus is

used. Jn 14° (Spenlin, 1546) minus is not used. In 15°

(Riese, 1550) it is freely used throughout.

Apart from the rule of false, plus is not used in the Arith-

metics except in 15° (Riese, 1550), where it occurs twice (§ 61).

VVidman in his fig question defined the sign — as minus,

but he does not use the word elsewhere except in the rule of

false, which is the only place where he uses plus. Lacher,

who wrote in Latin, substituted the words plus and minus for

Widman's signs + and — (§ 76).

It is not surprising that the word minus occurs often

and the word plus scarcely at all (except in the rule of false),

for minus is really needed as a technical word for 'diminished

by ' (in preference to minder or weniger), while und or simple

juxtaposition suffices for addition.

The use of + and — in algebra and arithmetic, § 81.

§81. In algebra cossic symbols, irrational quantities, and
natural numbers have to be combined by addition and sub-

traction, and it is evident that the special signs + and — are

more suitable for this purpose than words or the mere abbre-

viations of words, even if consisting of a single letter, and that

the 'rules of signs' in addition, subtraction, multiplication,

and division are more conveniently expressed by signs than

in words.

In arithmetic there is not the same need for the signs, for

the quantities to be connected by addition and subtraction are

of the same kind, and therefore the operations indicated by
them can be performed, but in algebra quantities have to be

united to form a single expression, although they cannot be

combined into a single term.

It is easy to see therefore why the signs + and — were
found sc useful and even necessary in algebra, and yet were
little used in arithmetic.
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In considering the prevalence of the signs the printer also

should he taken into account, tor although he always had the

type tor — , a special type would have to he made for +, unless
the alternative of a clumsy substitute, consisting of two —\s

with a vertical or sloping line between, was accepted.

The questions involving — or minus in the data, §§ 82—83.

§ 82. Coining now to the examples of the type of Widman's
fig and pepper questions (i.e. in which weights or denominations
ot money in the data are connected by signs or by minus or an
equivalent word) the account which has been given in § §04—75
shows that there were three such examples in 6° (Riese, 1525)
and numerous examples in 8° (Rudolff, 1526), 9° (Peer, 1527),
10°(Apianus, 1527), (Rudolff, 1530) described in §72,1 l°(Albert,

1541), 15° (Riese, 1550). Except in the one question in 10°

(Apianus), quoted in § 71, the sign + is never used, and it is

only in this question and in 11° (Albert, 1541) that — is used.

In 9° (Peer, 1527) the words minder and weniger alone are

used, and in the three examples in 14° (Spenlin, 154G) minder
is used; but in all the other works minus occurs, though
•weniger and minder were also used. As will be seen in §7G,

questions like Widman's were given by Lacher (1506— 1510;,
but + and — were not used.

§ 83. There is however nothing to show definitely whether
these questions represented actual commercial transactions or

were merely constructed as arithmetical exercises on the model
of Widman's questions. It is of course quite possible that

weights were recorded as centners diminished by a certain

number of lbs as well as centners with a certain number of

lbs added: but on the other hand it is quite possible that

VVidman in his exuberance over the signs + and — constructed

this kind of question to display their utility and the method
of treating them ; and this is rendered more likely by his use

of the signs in money where such a mode of expression

could scarcely have arisen naturally. A few of the questions

evidently were intended merely as exercises in tractions and
the use of — or an equivalent word.

In the weights the word minus or its equivalent occurs

only in connection with centners and lbs, or centners, steins,

and lbs, and it was always applied to the lbs. These were
presumably the only weights used for heavy goods. Lacher,

who was a close follower of Widman (see § 76), uses minus
with centners, steins, and lbs: in the sixteen books it was
only so used by Albert.
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I do not know of any questions in Borgi (1484) or Paciolo*

(1494) in which a minus or its equivalent occurs in the weights

or other data, nor have I met with such a question in any or" the

later Italian Arithmetics referred to in this paper (§§109-123).

It would seem that questions of this type are peculiar to

"Widman and his German successors, who may all have
derived their inspiration directly or indirectly from him.

Venice was so important a commercial centre that it is difficult

to think that the Venetian Arithmetics would not have con-
tained examples of this mode of expressing weights or money
if it was in actual use in commerce.

The rule offalse, §§84-87.

§ 84. In all the books in which the rule of false is given,

with the sole exception of 12° (Stifel, Ar. Int. 1544), the signs

+ and — are used to denote whether the error is in excess or

defect. These books are 4° (Grammateus, 1518), 6° (Riese,

1525), 10° (Apianus, 1527), 11° (Albert, 1541), 14° (Spenlin,

1546), 15° (Riese, 1550).

It is interesting to notice the form of words in which the

signs are introduced, and whether plus and minus are used.

Grammateus (1518) merely says "1st zu viel setze + 1st aber
zu wenig setz —

". Later on, in the algebra, he explains
"+ ist vnnd, — myunder" (§45). Riese (1525) uses the words
plus and minus: "zuuil so beze.yehenn sie mit dem zeychen
4- plus wu aber zu wenigk so beschreib sie mit dem zeychen
-4- minus genant" (§48). Apianus (1527) uses the word
minus but not plus u

zii zeitten metier oder minder, was zii

vil ist, vermerek mit dem zeichen plus +. 1st zii wenig, mit
dem zeichenn minus — " (§55). Albert (1541) does not use
the words plu3 or minus :

" So mach von stund, nach der

Falschen zal, diese linie mit durchgezognem stricklein, also

— /— Vnd bedeutet Metir . . . Wo aber zu wenig, zeucli

nach der Falschen zal diese linie — Vnd bedeut weniger"

(§56). Spenlin does not use the words plus and minus:
'"bedeut das zaichen + ziiuil, vnd das -H zii wenig" (§60).
Riese (1550) defines the signs as plus and minus " mit dem
zeichen + das ist plus . . . mit dem zeichen — das ist minus"

(§61)-t

* The works of Borgi and Paciolo are referred to on p. 4.

f Widtnan had no occasion to define the signs + and — , as he had used them
freely in the previous portion of his book. Although they are prefixed to the
errors in the diagrammatic representations of the positions and errors (with the
cross), he uses the words plus and minus in the explanations.
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§ 85. Widman placed the error to the right of the position

to which it belonged, the second position being under the tirst

position and the second error under the first error, and he

connected the first position with the second error, and the

second position with the first error, by a cross, bnt Graminateus

(1518), Riese (1525), and Albert (1541), though they followed

Widman in the mode of placing the positions and errors, dis-

pensed with the cross. Apianus, however, wrote the error

under its position (prefixing its sign) and used the cross. In

Spenlin (1546) the cross was made very large, the arm
reaching to the side of the position and error, and the differ-

ence was indicated by guide lines: thus

§ 86. In the rule of false the signs-f- and — do not indicate

addition and subtraction: they merely qualify the numbers to

which they are prefixed, so that they may be suitable for

treatment by the rule which is to give the correct result.

When therefore the error follows the position in the same line

we must suppose the insertion of some word such as ' gives

'

or 'produces' (which might now be indicated by putting a

comma after the position). The signs merely replaced the

plus and minus or piu and meno of the earlier writers, which

indicated that the result given by the position was more than

the truth or less than it, the actual deviation from the truth

being the error, i.e. that the result was more than the truth

by the error, or less by it. It seems strange that when +
and — were being used as signs of addition and subtraction

they should be placed with another meaning between the

position and the error*. When the cross lines were inserted

the whole arrangement could be regarded as a diagram shewing
the positions and errors, and which of them were to be multi-

plied, but when the cross was omitted there was even less

justification for placing the position and error in the same line

as if forming a binomial expression.

f

* Thus for example (on Evii) Grammateus writes

1*00+ C2

GOO -292

the positions being 900 and GOO and the corresponding errors + G2 and — 292.

f It is noteworthy that as soon as the signs + and — were introduced they
should have been so generally used in the rule of false. The words plus or minus,
or some equivalents, were required, and, as has been said, the 'law of signs",

which was required in the subtraction and multiplication, is more readily expressed
by + and — .
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§ 87. Among the Italian writers, Leonardo Pisano* (1202)

placed the error under the position and used the words plus

and minus, which he wrote over the error {i.e. between the

position and its error). In Borgi (1484) the error is placed

under the position with piu or men on the outside of the error

in the same line with it. In Paciolo (1494) the error is placed

under the position, tiie abbreviations p or ni being inserted in

the right and left angles of the crossing guide lines close to

the point of intersection. Leonardo wrote in Latin and Borgi
and Paciolo in Italian. All three placed the error under its

position and used guide lines to indicate which numbers were
to be multiplied. These formed a simple cross if the position for

only one quantity was shown in the diagram, but if there were
several quantities involved in the data, and the positions for

the first and also for those derived from it were shown in the

diagram, the guide lines connecting the errors with the opposite

positions formed a more complicated figure of intersecting

lines. In the latter case [i.e. when the positions, not only for

one quantity, but for those dependent on it were shown) the

error necessarily had to be placed below its position. In

Leonardo and Paciolo the position for only one quantity is

included in the final scheme, so that the guide lines form a

simple cross, but in Borgi they form a system of intersecting

lines. In later Italian books (of the first half of the sixteenth

century) the error is placed sometimes below and sometimes
to the right of the position, and the crossed lines are sometimes
dispensed with. The abbreviations p and In are frequently

used, and sometimes the word per is prefixed to the position.

The signs + and — are not used in Italian books during this

period.

f

Tlie use of the ivords tara andfusti by German writers,

§§ 88-102.

Introductory remarks. § 88.

§ 88. While examining the use of the words plus and
minus and their equivalent signs, I became interested in the

words tara and fusti. Both words came to the German
writers on arithmetic from Italy. The former is derived

* "Scritti di Leonardo Pisano . . . pubblicati da Baldassare Bonconipagni

"

(Rome, 1857), vol. i, p. 319.

f Two fifteenth-century Latin manuscripts on the rule of false in the Hof u.

Stants Library at Munich were printed by Cuitze in vol. xl. of the Zeitschrift

fur Moth, u Phya.', Supp. pp. '3:>-<\9, in both of which the words plus and minus
are used in the diagrams. In the first the error is placed under tiie position, the
word plus or minus being placed outside the error in the same line. In this
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from the Arabic word tarha, meaning 'what is thrown away',

and the latter is the plural of fusto, the stem of a plant*.

The general use of the words among the German writers is

that tara denotes the weight of the box, barrel, sack, etc., in

which goods are packed, and that by fusti is meant the part

of the goods which is of inferior value, such as the stalks

which accompany cloves. Thus in general the tara is an

amount for which no payment is made, and fusti is paid for

at a much lower rate than the principal part of the goods.

Widman (1489), § 89.

§ 89. Widman uses the word fusti but not tara. In his

fig question, in which + and — first occur (§ 11), he subtracts

the weight of the three barrels (Nu solt du fur holcz absclilalin

albeg fur eyn lagel 24 lb), and in the pepper question which

immediately follows it (§16) he subtracts 3| lb for the weight

of the sack (vii sol fur den sack absehlahn 3lb + £). Jn a

question relating to grapesf 29 lb is taken off for the wood
(vii geth ab an de 3 lagelii fur das holcz 29 lb). In the next

question on oil (§ 18) 9 lb is taken off in each centner for

the wood (Vnd get ab fur das holcz ye fur 1 ct 9 lb), and in

the question relating to soap (§ 18) 12 lb in the centner is

taken off for the wood (vnd geth ab fur das holcz ye fur 1 ct

12 lb).

It will be noticed in these three questions of Widman's
that there are two kinds of deduction from the gross weiglit,

viz. (1) the actual weight of the containing vessels (ban els,

sacks, etc.), and (2) a percentage on the gross weight to

represent the weiglit of these vessels or other allowance.

Widman does not use the word tara, but both of these kinds

of deductions were so denoted by subsequent German writers.

Under Regula Fusti Widman gives two examples. In

the first, 27811b of cloves are bought, the pure cloves costing

11 ss 3 hlr the lb, and the stalks (fusti) 2 ss — 3 hlr the lb, and

manuscript the positions of all the quantities in the data are shown, and the guide

lines form a system of intersecting lines. In the second manuscript the position for

only one quantity is shown, the position and error are written in ihesame line, and
a cross is used. In the first manuscript, in the description of the rule, the excess

and defect of the result are called ' abundancia seu supeifluum ' and ' defectus '. and
in one diagram, where both results are in excess of the truth, supeifluum is u*ed

instead of plus. Plus and minus seem to have been generally used in the diagrams
in the rule of false, although they were rarely used as signs of addition and
subtraction.

* Drobisch on p. 19 of his work De loannis Widmanni...compendio, referred to

in § 1, writes " Vocabulum fusti fucuni vel futilia in merce significat", and he puts

in a footnote "Ab Italica voce fusti, proprie cauliculum baccarum uvre passse

significans".

t Widman, p. 93.
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one centner contains 13 lb of fusti "Eyner kanfft 278 [should

be 2781] lb ye lib lautter pro 11 ss 3 blr vnd lib fusti pro

2 ss- 3 lib- Nu belt ye 1 et 13 lb fusti ". This is followed by
a question on saffron in which 100 lb cost 94-1- fl, and the cost

of 384^ lb is required "vnnd let helt 15 lb vnreyn ". Here
the 'vnreyn' amounts to 57jj^-lb and the solution shows that

only 326|{] lb is paid for, so that the 'vnreyn' is entirely

waste.

Thus Widman uses the word fusti when the inferior matter

mixed with the goods is of some value and is paid for, and
vnreyn when it is valueless and not paid for: but in his

explanation of the Eegula Fusti the words vnreyn and fusti

are treated as equivalent.*

Lacker de Merspurg (1506—1510), §90.

§90. In the Algorismus of Laeher, described in §76, the

word tara is not used, which is what we should expect from
bis close following of Widman. The amount to be subtracted

-from the gross weight to allow for the weight of the containing

vessel is expressed by ' quelibet aut lag. I ligno poderat 25 lb',

' defalcator 14 lb pod9
corbularum', 'Prima vero lagena poderat

in ligno. 21.1b', 'resecatur de quolibet cetenario. 20 lb ratioe

vasis '.

There are two fusti questions in one of which 1 lb of cloves

costs 12ss and 'lib fusti vel itnpuri' 2ss, a centner containing

15 lb of fusti ; and in the other a centner of saffron contains

20 lb of fusti, and a centner of [pure] saffron costs 340 fl. hi

this question the fusti is waste and is not paid for. These
questions correspond exactly to Widman's, in which th<;

inferior matter mixed with cloves is of value, but that mixed
with saffron is valueless. Laeher makes no distinction between
fusti and impuri, for he uses 'fusti vel impuii' for the stalks,

etc., in cloves, and ' fusti' for the refuse in saffron.

Boschensteyn (1514), §91.

§91. As mentioned in § 65, Boschensteyn does not use the

word tara, but he gives a question relating to oil in which

* This explanation, though the words are printed without a break, is really in
rhyming verse. The first four of the six lines are :

" llegula Fusti drey regel hatifi wil

lauter vmein miteampt des musters* zil

auss dem muster thu den fusti formirii

denn darnach vonn lantern Bubtrauira ".

These verses also occur in Boschensteyn (§91) and in Feer (see §08).

VOL. LI. F
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11 lb on tlie centner is taken off for the wood (schlecht ah fiir

das lioltz 11 11) am ct), and 1 centner pure (lauter) is sold for

6fl l^ort. Here the solution shows that ' 11 lb am ct ' does

not mean 11 per cent, but that 11 lb in every 111 lb is to be

treated as wood.

On C vi, under Regula Fusti, he gives Widmnn's verses,

writing them in separate lines as verses,* and also his first

question, "Item ainer kaufft 27 ct. 81 lb. negelein ye lib

lauters vmb 11 ss. 3 hlr. vnd 1 lb. fusti vmb 21 hlr.", which he

solves in the same manner.

Grammateus (1518 and 1521), §92.

§92. Grammateus is the first German writer I have met

with who uses the word tara. In the question quoted in §66,

six centners of pepper are bought for 50 fl the centner pure

(lauter), and 1 centner holds 5 lb tara (liielt.l .centner tara.

5.1b). Jn the solution the 30 lb tara is subtracted, leaving

570 lb, which is paid for at the rate of 50 fl for 100 lb.

It would seem therefore that tara here means waste, i.e.

matter mixed with the pepper, and which is of no value.

fiiese (1525), §§93-94.

§93. The first use of tara in 6° (Riese, 1525) is where a
' stumpff Saffran ' weighs 38 lb 16 lot, and the tara is 9 lot.f

The tara is subtracted from the gross weight, leaving 38 lb

7 lot. Jn the next question a sack of calamus weighs 48 lb

24 lot, and the tara is 2 lb 16 lot: and there are several other

questions of the same kind where the tara is a definite amount

to be subtracted.

In the question relating to soap, quoted in § 67, the tara

is on the centner (tara vff ein cent: lOpfnndt). The solution

shows that in every 110 lb, 10 lb is to be deducted as tara.

On Eii', under the heading 'Fusti', Riese gives a question

in which a sack of cloves which weighs 654^ lb and costs 9 ss}

a lb in Venice is transported to Nuremberg at an expense of

25 fl. A centner contains 15 lb of fusti, and the cloves (pure)

are sold at 16 ss a lb and the fusti at 4 ss a lb; and 10 Venice

lbs are equivalent to 6 Nuremberg lbs: the question is whether

lie gains or loses.

* There are some slight changes in the words,

f This question is quoted in the note to §67 (p. 4S).

X This is printed 6 ss in the book, but the result shows that it should have
been 'Jss.
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There is also another question (on E vii) in which the tara

is on the centner. Here, 4 barrels of oil weigh "22 cent :

5 stein 6 pfundt kost em cent: 9. margk ein ort tara 12 pfundt
vff ein cent :

" and it is explained that a margk is 48 groschen,
a groschen 7 pfennige, a centner 132 pt'undt, and a stein 24
ptundt. Thus the question is equivalent to finding the value or

3030 x -- xi
144 132

marks, which gives Riese's answer, " 194 margk 30 grosch :

vnd veirthalben pfen".

§94. The following list relates to the 11 examples on
Diiii'—D vi' in which tara occurs. It gives the description

of the goods and the receptacles in which they are contained,

and the statement of the tara, exactly as printed in the questions.

Diiii', ein stumpff Saffran wigt...tara 9 lot

Dv, ein S;«gk mit kalmass wigt...tara 2 pfund vn 16 lot

„ zvvu Ziehen mitt paumwollen wegen...tara 37 pfundt
Dv', ein Sagk mit schaffvvoln wigt...tta 21 pfundt
"

,, ein Vhass mit weinstein wigt...tara 21 pfundt

„ ein Vhass allaun wigt...tara 23 pfunt

D vi, funff Korb mit veygen wegen...tara vff yeden korb
14 pfundt

„ 5 Vesser mit vnschlet wegenn...tara vff yedes vhass
21 pfunt

„ vier Lagel mit oel wegen...tara vff ein cen. 11 pfundt

D vi', drey thonnen mit honig wegen...tara vff ein cen:
12 pfundt

„ vier lagel mit Seyfen wegen.. .tara vff ein cen : 10 pfundt
There is nothing in these questions to indicate what the

tara represents: it might be any deduction allowed by the
vendor. But there can, I think, be no doubt that the tara is

the actual weight of the receptacle which contains the goods.
This may be inferred almost with certainty from the similar

list in § 96 relating to lludolff's questions, in which, when the

receptacle is of wood, it is stated that the tara is for the wood.

Rudolf (1 526), §§95-96.

§ 95. In 7° (Rudolff, 1526) there are a number of questions
in which the tara is an absolute quantity, and also in which
it is ' auff den centner'. Thus in one of the questions quoted
in § 68 we have " 1 stumpf saffian wigt 37 lb \. thara 9 lot fur

den stumpf", and there are other questions in which there is
i thara auff den cell'.
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In three questions both fusti and tara occur, viz. on I 5',

" ftem 1 sack neglein wigt 6 cen 54 lb. thara fur den sack 4 lb.

belt 1 cen. fusti 15 lb, cost lib lauter 16 ss. vnd lib fusti

4 ss" ; on I 7', " Item ainer kaufft 3 seek mit neglein. ..Thara

fur die seek 6 lb, belt der centli 12 lb fusti, cost 1 lb lauter 6 ss

vnnd lib fusti 3 ss 20.9"; and on K 7', '3 seek neglein'

contain respectively 8 lb, 10 lb, and 12 lb of fusti per centner,

the ' thara' for each sack is 2 lb, and 2 lb' lauter' costs 1 ducat,

and 5 lb of fusti costs 1 ducat. On K 6 there is a question

in which a sack of cloves holds 15 lb fusti, and lib 'lauter'

costs 16 ss and 1 lb of fusti 4 ss: but there is no thara.

§96. The following list is similar to that derived from

Riese's questions which was given in §94. All the questions

occur on I 4'— I 5'.

I 4', 1 st u in pf saffian wigt. ..thara 9 lot fur den stumpf

„ 4 seckh mit mandeln wegen... thara fur dye seek. 12 lb.

„ 3 sehaf smaltz wegen. ..Thara fur holtz 12 lb I

] 5, 1 sack mit schafwoll wigt. ..thara fur den sack 19 lb £.

„ 3 zichen mit bautmvoll wegen. ..thara fur dye sack 37 lb

„ 4 korb mit feigen, wegen. ..thara fur jeden korb 13 lb

„ 1 vass mit weinstain wigt. ..thara fur holtz 27lb^.

„ 1 vass alaun, wigt. ..thara fur holtz auf den cen. 6 lb

„ 5 vesser mit vnslit, wegen. ..thara fur jedes vass 21 lb

„ 4 lagel bauin oil wegen. ..thara fur holtz auf 1 cen. 11 lb.

„ 3truchenmitsaiffen,wegen...tliarafurholtz lOlbauf lcefi.

1 5', 3 tonnen honig wegen. ..thara fur holtz auf 1 cen. 9 lb.

„ 3 tonnen honig wegen... thara auf den cen 10 lb.

„ 1 sack neglein wigt... thara fur den sack 4 lb.

Whenever the goods are contained in a wooden vessel

Rudolff has added that the tara is for the wood : thus the tara

is for the wood in the case of the 3 tubs of grease, the vessels

containing tartar or alum, the barrels of olive oil, the chests

of soap, the casks of honey, and we may assume therefore

that when it is for the sack, basket, etc., it is for the weight

of these receptacles, and has no reference to the goods them-

selves.

Other questions in which ' thara ' is used occur on 1 6, I 7',

Iv7, K7', L5', M 2', and it is always ' auff den centner', or

for the ' sack ', ' holtz ', or k jedes vass \ 1 do not think there

is any instance in which 'thara' occurs without the addition

of the receptacle to which it relates.

Peer (1527), §§97-98.

§97. There are similar questions in 8° (Peer, 1527), in

which tara is either a definite quantity or a proportion ot the
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gross weight; and, like Rudolff, in giving the tara, Peer

always mentions the sack, barrel, wood, etc., to which it

refers. But in some cases he does not use the word tara,

following Widman in his mode of describing this deduction :

e.g. on D 7 in a question relating to two barrels of soap he

lias " vil geet ab an den zweyen lageln fur den holtz 72 lb".

Peer is the first writer I have met with who explains the

distinction between 'tara auf den centner' and' tara in den
centner'. This occurs in D 2' and D3 under the heading
"Ein vnterriclit, wie man den thara auff oder in cetner ver-

steen sol". He says that the wood may be taken into account

by giving something to the centner, or by deducting its weight

from the centner*, and his examples show that if the tara is

on the centner it is to be added to the centner, and if it is in

the centner it is to be subtracted: thus it' the tara is 10 lb

' auff den centner ', 100 lb out of every 110 lb is ' lauter ', and
if it is ' in den centner ', 90 lb out of 100 lb is ' lauter '.

"
§ 98. Peer gives (on F 4') Widman's versesf (§ 89) about

the Regula Fusti, followed by his example in which 27 ct 81 lb

of cloves are bought, 13 lb in each centner being fusti, t lie

pure cloves costing 11 ss 3 lilr a lb and the fusti 21 hlr (§§ 19,

65, 70). This example he works out in detail. He also gives

another example in which 5 centners of cloves are taken from

Venice to Nuremberg ' vnd gehet ab fur den sack 6 lb', and
100 lb contain 15 lb fusti, and 1 lb ' lauter' is worth 13 ss and
1 lb of fusti is worth 2 ss.

Previously (on U 2') he had given two questions in which

saffron contained 'vnreins', which was not paid for. In the

first, 100 lb of 'wilder saffran' cost 80 fl and the question is to

find how much 7 ct 84 lb cost, if 100 lb ' haben 15 vnreins'.

The next question is Widman's saffron question (§ 89), viz. if

100 lb of saffron cost 94^ fl, what is the cost of 384^ lb if ' 100 lb

babe 15 lb vnreins'. It is to be remarked that although

Widman places this question under Regula Fusti, Peer places

his saffron question in which there is unrein [i.e. waste, of no

value) in an earlier part of the book, and does not include

unrein under fusti.

* " 1st die geraain regel, so etwas auf geben wirt zum centner sol man addirn,

tvegt ein kleyns mer, dadurch dz holtz bezalt wird. Ilechent man aber das vnter
einern cetner scliwer etlieh pfundt holtz sein sol, oder darfur la^st abjreen, sol man
solche gemelte pfunt von einem centner subtrahirn. Des gleiehe hab solclie auff-

merkung der rauchen war halben ".

t Thej' are given without a break (as in Widman), and not as verse (as in

Bbschensteyn) : there are alight verbal differences.

F2
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Apianus (1527), § 99.

§ 99. Apianus*s use of the word tara is similar to that

of Kudolff and Peer, and, like them, lie always mentions
that the tara is for the sack, or barrel, or wood, etc.

J n the oil question (quoted in § 71), which was modelled
upon W idman's fig question (§ 11), he differs from Widman
by using the word tara. Thus Widman wrote "Nu solt du
fur holcz abschlahii albeg fur eyn lagel 24.1b vTT dz ist 13 mol
24", and Apianus has "thara vor das lioltz an jtlichem Vass
abgeschlagen 19 lb . . . Multiplied 9 lagel mit 19 lb thara".

Under the heading Regula Fusti (on Mi) Apianus gives

three examples relating to pepper, saffron, and cloves. In

the first, 4 ct 38 lb of pepper is bought: 1 centner contains

7 lb of fusti and 1 centner of pure pepper costs 60 fl and 1 lb

of fusti 9 hlr. In the second question (which has been partially-

quoted in § 71), ' 1 stumpff Saffran ' weighs 244 lb ' thara fur

den stumpff abgeschlagen' 2^ lb, I centner contains 20 lb

fusti, and 1 centner 'lauter' costs 400 fl and 1 lb of fusti l^fl.

The third question (Mi') relates to cloves, but it is unintelli-

gible, sufficient data not being given, and the result is inconsistent

with the data: but it is clearly meant that each centner con-

tains a definite amount of fusti, and that the pure cloves and
fusti have different values.

It will be noticed that in the first of these questions the refuse

in the pepper is called fusti, and that it is paid for.

Rudolff's Exempel Buclilin (1530), § 100.

§ 100. Kudolff's Exempel Buckling, referred to in § 72,

contains a number of examples in which tara (as a definite

amount or ' auf den centner' or 'in den centner') and fusti

occur. In one question (107)$ he explains the difference

between tara on the centner and in the centner. " Die
rechnung darauff zu griinden, das (lurch in ceil 5 lb verstanden

werden, 100 lb. geben lauter 95 lb. Vnnd durch auf den cell

5 lb. das 1051b geben 100 lb lauter"; and he points out that

the word ' auff ' is more favourable to the seller.

In some questions Kudolff uses the word 'Gerbeluer',
which has much the same meaning as fusti. Thus question 105
is "Eiii sack pfeffer wigt 5 centner, 18 lb. Tara fiir den

* This question remained unaltered in the second and third editions (Frankfort,
1537, 1541), except that in the third edition there is a misprint of 3 for 13.

f As in §72 the quotations are from the edition of 1501, and the questions are
referred to by their numbers.

X In this question, which relates to 'ein lagel seiffen ', he refers to 'holtz oder
thara gtwicht'.
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sack 4lb^. Helt der cen. 13 lb Gerbeliir vnnd werden 3 lb

gemelts Gerbeluer pro 2 lauter iin kauff angesehlagen, vnnd.

das lb lauter pro 3ss^. VVieuil gelts kost der Pfeffer sament-

lich". In the working 13 lb Gerbeluer is taken as 8§ lb pure:

this added to 87 lb makes 95|lb, which at 3' ss the lb gives

334^ ss. The result is then obtained as the fourth proportional

to 100, 334§ss, 5131.

The word Gerbeluer means garble, i.e. merchandise

(generally spices) which contains an admixture of refuse or

waste.

In the next question (106) some sacks of ginger weigh
16 centner 28 lb. The tara for the sack is 18 lb. " Helt der

cen. 13 lb Gerbeluer vnnd 3 lb staub, werden angeschlagen iin

kauff 5 lb Gerbeluer pro 3 lb lauter". The centner pure

costs 54^ fl.

Here the 13 lb Gerbeluer is equal to 7|Tb pure, and the

dust is of no value, so that the centner contains 9lilb pure,

which is paid for at 54|r fl the centner, giving oOyj^y fl, and

the first three terms of the proportion are therefore 100,

I '

Albert (1541), § 101.

§ 101. There are many questions in 11° (Albert, 1541)

which involve tara, either as an absolute quantity or dependent

on the centner, and generally Albert mentions the receptacle

to which the tara relates.

In a question (on I vi) relating to barrels of raisins there

is 'Tara fur holtz 16 pfund ', and in the solution he writes

"Das Tara nim allweg vom hintern, Stehet aber das wdrtliii,

jnn, oder auff, dabey, so addirs dem fordern ". On 1 viii he

lias a question relating to '4 Tonnen' of honey with 'Tara auff

iglichen centner 15 pfund'. Here the centner is 110 lb so

that 125 lb is given for the price of a centner and the ex-

planatory words are "Tara auff, Addir (wie oben angezeigt)

zum fordern ". He does not seem to give any questions iu

which the tara is in the centner.

On lviii he has the heading'' Die Regula Fusti, wird gemein-
iglichgebraucht jnndenNeglein, Saffran, Corbern, Gold, Silber

etc. wie hernac'.i wird angezeigt", and he gives the example
"Item, Ein sack mit Corbern wigt 8^ cent. 34 pfund, Tara
fur den sack 11 pfund, Kost 1 cent, lauter 3 fl 13 ss 4 hel. Vnd
1 cent, helt 13 pfund, Fusti, das ist vnreines. Facit 28 fl 3 ss

2 heller Jfteil . Here the word fusti is used as equivalent
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to vnreines or waste, and is not paid for. Corbern is pre-

sumably corbeeren, the fruit of the cornel tree.

In another question on Ki a person buys "einen sack mit

Neglein, weget 3ct — 16 lb, Tara fur den sack 7 pfund, Kost

eiu pfund Lauter lfl 13 ss*, Vnd ein pfund Fusti 9 heller,

Vnd ein cent, belt 12 lb Fusti". Albert gives the solution in

full, finding first the amount of fusti, then the cost of the pure

cloves and the fusti, and adding the two amounts.

Spenlin (1546), § 102.

§ 102. In 14° (Spenlin, 1546), under the heading Regula

Fusti (p. xlv.), there are a number of questions involving tara.

Jt is explained that 'thara' is a deduction, as when one

weighs wool in sacks, or fat, oil, or other substances in vessels,

and then the sack or vessel alone, and so much is taken away
from the whole amount. In his examples the tara is nearly

always the weight of the sacks or vessels ; but on p. xlvii. he

gives a question relating to wool in which the 'tara fur

ausswurff, auff 1. cent' is 10 lb, and the cost of the pure wool

is 12^fl. Here the 'ausswurff' is the rejected matter. In

connection with this question he mentions the distinction

made by some calculators between 'auff' and 'inn', but

states that he himself will always use ' inn '. He carries this

out in his next question relating to the purchase of 2345 skins,

in which "man gibtjm jnns 1000. fell 25. fell fur ausswurff",

viz. he finds a fourth proportional to 1000, 975, 2345, which is

2286^, and this is the number of skins paid for. Here a

deduction for waste is regarded as tara. In several other

questions the tara is in the centner, and in no case is it on the

centner.

it thus appears that Spenlin used the word tara not only

for the weight of the receptacle but also for waste in the

goods, and that both these deductions formed the subject of

his chapter Regula fusti. Under this heading he gives no

example in which fusti occurs, although there are two questions

relating to cloves (in which there is tara for the sack or sacks),

but on j). lxv' (under 'Gewinn vnnd verlust') he gives a ques-

tion in which a sack of cloves weighs 2 cent. 18^ lb, " thara

fur den sack 7^ lb, belt der cent 12^ lb fusti oder still, kost

1. lb lauter 12. batzen 8.3, vnd 1.1b tusti 7 batzen l.cr . .
.'*.

This is an ordinary fusti question, and he explains fusti as

still (stalks).

* Misprinted 1 fl 1 ss in the question.

t On p. lxix. lie has another question of the same kind relating to wool, in

which the ' thara fur aussweiffen ' is 4 lb in the centner.
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Riese (1550), § 103.

§ 103. In 15° (Riese, 1550) there are a number of questions

in which tara is used, both as a fixed amount to be subtracted,

and as dependent upon the centner. There is a special head-

ing (pp. 25' and 85) " Vom tara auff vnd in den Centner", in

which the two methods or' treating tara are illustrated by
examples. None of the examples differ iu principle from
those given in earlier works. He has questions involving

cloves and f'usti at different prices, and in which the tara

is given (pp. 31', 32, 90).

Usual meanings of tara andfasti, §§ 104—105.

§ 104. It thus appears that the writers subsequent to

Grammateus almost invariably used the word tara in connection

with the weight of the vessel or other receptacle in which the

goods were packed. When the tara is an absolute quantity,

as for the sack or barrel, it is the actual weight of the recept-

acle, and when it is 'on' or 'in' the centner it is intended to

represent this weight. The one exception I have met with

is in Spenlin, where ' thara fur ausswurff' occurs, the ' thara
'

being the deduction made from the weight on account of the

rejected matter in the merchandise itself.

Widman did not use the word tara. In his fig question he
made a deduction for the weight of each barrel, his words being

"fur holczabschlahn albeg fur eyn lagel 24lb"; but Apianus, in

his oil question, which was closely imitated from it, replaced

this by "thara vor das holtz an jtlichem Vass abgeschlagen
"

(§ 71). Widman in other questions also made a deduction for

the weight of the receptacle. In Grammateus tara was used

for waste, but the word only occurs once.

The distinction between auf and in den centner seems to

have been made early, though the first explicit statement of it

that I have found is in Peer (1527). It may be noted that the

deductions for the weight of the vessel which Widman makes
(other than those in which the actual weight is given) belong

to the class 'in den centner'; but deductions ' auf den centner'

are more usual in all the later Arithmetics. Bbsehensteyn

uses 'am centner' with the meaning of 'auf den centner'.

§ 105. The word f'usti, which occurs so frequently in

connection with cloves, means the stalks, etc., mixed with

them, which were paid for at a lower rate than the pure cloves.

The woid fusti was also used in connection with saffron and

pepper (Apianus) and with corbern (Albert), in all the
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questions I have met with in wliicli fusti occurs in connection

with cloves, it is paid for; but in Apianus's questions on pepper

and saffron, and Albert's on corbern, it is regarded as waste.

Widman and Peer used unrein instead of fusti when the

matter was valueless, but Lacher has 'fusti vel impuri ' and

Albert 'Fusti, das ist unreines', showing that they regarded

the words as having the same meaning.

Tropfke s remarks on tara, §§ 106-107.

§106. Under the heading 'Die Tararechnung ' Tropfke

has made some statements in his Geschichte* which seem to be

inaccurate. He writes: " Im Bamberger Rechenbuch von 1483

wird ein Gewichtsabzug als ' das Minus ' bezeiclmet
;

die

Behandlungsweise soldier Aufgaben im Rechenbuch (1489)

des Johannes Widmann von Eger geht unter dem IS amen

regula fusti. Richtiger sagt Koebel 1537 regula fusci (fuscus==

braun, unrein) und erklart: ' Das wort Fusci, bedeut nichts

anders dann ein zerbrochen gut gemiilb, odder ander vnrey-

nigkeyt, so in der Specerei funden wirt, als vud den Negelin,

Ingber, Saffran etc. Audi Silber vnderm golt, Kupffer vndenn
sylber. Die vass voin Honig, Butter, Oley etc. vnd der

gleichenn vermiseht unreinigkeit ' . . . Dieser allgemeineii Er-

klarung gemiiss behandelt Koebel audi Legierungsaufgabeu in

seiner regula fusci".

In the statement about the use of ' das Minus ' he follows

Cantor. This use of minus will be referred to in § 108.

Tropfke is incorrect in stating that Widman treated weight-

deductions under Regula Fusti. Of the two examples which

Widman gives under this heading one relates to fusti, which

is paid for, and the other to ' vnreyn ', which is not paid for;

but there is no deduction for the weight of the wood, although

such a deduction is made in other examples (§ 89).

Koebel was wrong in replacing fusti by fusci, and imagining

that fusci was the correct form, and it is surprising that Tropfke

should have accepted his supposed collection. Tropfke pro-

ceeds: "Das Wort Tara scheint in dcutschen Rechenbiichern

zuerst von Riese benutzt vvorden zu sein ;
sein Rechenbuch

von 1550 weist es einmal in einer Uberschrift auf: 'Von Tara

auff und in den Centner', im Laufe der Rechnung erscheint

ftber i miner das altgewohnte Wort Minus. Audi im Rechen-

buch 'auff der linihen ' von 1518 ist Tara im Text (3. Aufl.,

Erfurt 1530, Signatur Cim) gelegentlich verweudet".

* Geschichte der elemcntar-mathematik (1902), vol. i., pp. 112-113.
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Tropfke's remark that in the course of the calculation the

long-used word minus always appeals might convey the im-

pression that minus was used for tara in the working of

the questions, but liiese's 'das minus' is distinct from tara,

being the sum of the other quantities which, besides the

tara, have to be subtracted. Thus lie says "Nim ab das

minus vnd tara" in questions 118, 122, 124, 125, etc. (pp. 24,

24'), and in 131 (p. 25') he has "JNim ab das minus vnd nicht

das tara, sonder gib das zum Centner"; and " nim ab das

minus" occurs in 173 (p. 34), where there is no tara.

From the occurrence of tara in the 1530 edition of Riese's

Bechenung aujf den Linihen, Troptke seems to infer that it

was used in the edition of 1518, of which Unger knew of no
existing copy (p;»ge 31, note). It occurs in the 1525 edition of

the Bee/tenuity, first published in 1522 (§§67, 93), but had been
previously used by Granimateus.

§ 107. Troptke quoted from a book of Koebel's of 1537,

but the word fusci and the same explanation of it also occur

in Koebel's Eyn neiiw RecJieldlchlin of 1525*. After the

explanation which Troptke lias quoted (p. clxxxvi.) Koebel
treats separately the three classes into which he has divided

'fusci' and he gives one example of each class. The three

classes are (l) spices, (2) gold and silver, (3) oil, butter, honey,

etc. In the example of the first class, a sack of cloves con-

tains a certain proportion of fusti, the pure cloves and the

fusti being paid for at different prices; and in the example of

the third class, the weight of the containing vessel is calculated

and subtracted from the gross weight, no account being taken

of any impurities in the merchandise itself. The latter ques-

tion is: the oil in three vessels weighs 370 lb; 3 lb in every

50 lb is taken off for the wood; and lib of oil costs 2ss;

what is the value of the oil? Jn the solution the weight of

* Tropfke gives the title of the book from which he quotes as "Zvvey Rechen-
biiehlein : uff den Linieti unci Zipher rnit eynn angehenkten Visirbuch " (Oppen-
beim, 1537/38). The title of the book of \b'lo is "Eyn neiiw Rechebuohlin laeob
kobels statschreibers zii Oppenheym auff den Linie vu spade gatz leichtlich llechen

zii leinen mit vyelen ziisetze, Nemlich der Regeln Fusci vff ^pecerei Goldt, Silber,

Oley, tlonig, etc. Uaizii die regel Pagamets eyn miintz gegen andere : ziiuer-

gleichenn, etc." At the side there is a woodcut of a seated monkey, and below a
' Rechenbanck ' with three ' Bankirs ' and " Getvuckt zii Oppenheym. . . . Anno
M.D XXV." It will be noticed tlint ' Regula Fusci' occurs in the title. I do not
know if this is a first edition or the first work of Koebel's in which ' Regula Fusci

'

appeals. It does not occur in " Eyn Neiiw Etechebiichlein. Vff den Linien vil

Spacie ..." lefened to in the last note on p. 29. In the second edition of

Apianus"s Rtchnuiicj (Frankfort, 1537) fusti is replaced by fusci.
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to find the cost of 347f lb at 2 ss a lb, which is 34 gn 15 ss

l\ Mi*.
The question about cloves is: a sack of 336 lb of cloves

contains pure cloves and fasti : lib of pure cloves is worth

9 alb, and' 1 lb of fusti is worth 11 pence ; and it is found that

5 lb of cloves contain 8 lot of fusti: it is required to find tlie

weights of pure cloves and of fusti, and the value of the whole.

Here ^ of 336 lb is fusti and the remainder is pure cloves,

i.e. there are 16*- lb 9* lot of fusti and 319 lb 6| lot of pure

cloves. [Koebel gives the fractions as | and | instead of jj-

and §.] The former at 11 pence a lb amounts to 23 alb Of d,

and the latter at 9 alb a lb, to 191 lb 7 alb 6§d, taking 8 pence

to the alb and 15 alb to the lb. Thus the total value is 193 lb

alb 7^ d. Koebel's values are 23 alb 4f d, 191 lb 7 alb 4| d,

and 193 lb 1 alb 1 d for the totalf.

Koebel's division into classes is unsatisfactory, for the

spices need something to contain tliem (such as a sack) as

much as the oil, etc., need a barrel or jar; and the latter,

as Koebel carefully points out$, contain impurities (either to

be paid for at a lower price, or not to be paid for) as well as

* p. cxcviii. Koebel erroneously gives the result as xvii gn vii ss ix hlr — which

is only half the correct amount. In this book of 1525 (as in his earlier writings)

Koebel, although he mentions the Arabic figures, uses cumbrous Roman numerals

even in fractions. Thus in this question he gives the weight of the oil as

<JC(J L XX lb, and takes off III lb in L lb for the wood, the cost of I lb of the oil

being II ss. From the proportion L III III LXX he obtains 'XXII pfud

—

eines pfiids ' as the amount taken off for the wood, and he then forms the pro-

portion I II CCCXLVII^' to give the final result. We may presume that Koebel

supposed he was making a correction in writing fusci instead of fusti, but he was

behind bis age in not using Arabic figures, and his books afford striking evidei icebehind bis age in not using

of the awkwardness of the Roman numerals in expressing operations and results.

On the other hand he was in advance of his time in numbering the pages (instead

of leaves), for, after ix, where the arithmetic begins, the pages are numbered (in

Roman numerals).
, §I1 . ,.

t Koebel obtained his values by reducing the weights to lots and omitting the

fraction of a lot; thus his proportions are 32 : 1 1 ::537 and 32:9 :: 10214; but

these proportions give the values 23 alb
T

> 9d and 191 lb 7 alb bhd, which differ in

the pence from Koebel's results. [It is possible that he may have taken the former

value to be 23 .19 alb, which would give 23 alb 4fd]. The proportions and results

are expressed in the Roman numerals. In the Frankfort edition of 154 1 (and

perhaps in earlier editions) the Roman numerals are replaced by Arabic figures,

but the leaves (not pages) are numbered. The questions that have been quoted

occur on pp. 80, 80' of this edition. The errors are not corrected.

I
'• Die vass vom honig, butter, oley etc. vn der gleiche vermischt unreynikeyt,

das von dem gantzen vud reynen in kauffen vii verkauffen abgesundert, oder vm

minnei gelt daii das reyn vnd giit kaufft vnd verkaufft wirt" (p. clxxxvi)
;
and

the third class is introduced in the words, " Der drit vnderscheyt der regel fusci

leret rechnen vnd enscheyden den kauff des iiles, buttern, honig. vnd der glen-hen

geware,diein vassen verkaufft vti kaufft wirtdurcli regeln vnd exeinpeln wie tiacb-

nolgt (p. cxcvii): and then follows the oil question. These quotations are from the

152j edition.
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the spices. In Lis example relating to cloves there is no

mention of the weight of the receptacle in which they are

packed, and in the oil question no impurity or waste is taken

into account. The word tara is not used by Koebel.

The use of
i das minus' in the Bamberg Arithmetic (1483), § 108.

§ 108. Cantor states that in Chapter X. of the Bamberg
Arithmetic " what, on account of the packing, was not to be

included in the weight of the goods, and which was later

called tara, is here simply called das minus and is subtracted".

Without examining the book itself it is not possible to judge

whether 'das minus' was used as a special term for tara,

or merely meant that it was a minus quantity and therefore

to be subtracted. The latter view would seem the more

probable. In his fig question Widinan defines — as minus

and gives the direction ' add the — , that is 75 lb ' (addir dz —
dz ist 75 lb). Here ' dz — ' is equivalent to ' das minus ', and

is merely the sum of the negative weights, which is to be

added to the weight of the wood (equivalent to tara) : and
in another question (§ 26) he gives the direction 'add + and
— together', meaning that the terms which have these signs

are to be added (as they are on opposite sides ot the equation).

Kiese (1550), as has been mentioned, often has 'Nim ab das

minus vnd tara' (§ 106).

The use of the ivords tara and fusti by Italian ivriters,

§§ 109-112.

§ 109. The early Italian writers used tara in a more
general sense, for it was applied to any deduction from the

gross weight of merchandise that had not to be paid for. It

was almost invariably expressed as a percentage.

Borgi (1484), §§ 110-111.

§ 110. In Borgi (1484)f there are many questions in which
' abatando de tara' occurs, the tara being almost always

expressed as a percentage on the gross weight. A typical

question is: 100 lb of cotton cost 6 due. 7 gr. 18 p., what will

5432 1b cost, 'abatando de tara' 7 lb per cento, and the

' me.setaria ' 2 due. per cento ?| The procedure is: calculate

the amount of the tara, and subtract it trom the gross weight,

* Cantor ii. p. 221. " Was we^en Verp;ickung nicht als Waarengewicht
mitzurechnen ist und spiiter Tara genannt wurde, heisst liier einfach das Minus
und wild subtrahirt ".

f The title of Borgi's book was given on p. 4.

X p. -Jd'. Mesetaria was a percentage on the total sum paid, which was due to

certain officials.
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giving tlie net weight (nete de tara) : then calculate the cost

at the price given, and deduct 2 per eent on this cost tor

mesetaria. Borgi gives a great many similar questions* in

which the tara is always a percentage on the weight.

In one question! a mier of oil is worth 34 due. 17 gr., and

the question is to find the value of 17miera 16 miri 19 lb

' abatando de tara ' 3 miri 15 lb per mier, and the ' mesetaria'

2| per cento. A mier is 1000 lb and a miro 25 lb, so that

3 miri 15 lb is 90 lb and the tara is 90 lb on 1000 lb, that is

9 per cent; thus the tara is expressed practically as a percentage.

In another example the equivalent to 'tara auf den centner'

occurs, though the word tara is not used. It relates to skins:

if 100 (vn centenar de pele) are worth 13 due. 10 gr., what

will 1312 be worth, 8 per cent extra being given (dagandone

sopra pele. 8. per cento)? Thus 108 skins are given for

13 due. 10gr.|

§ 111. Borgi has two questions relating to cloves and

fusti. In both questions a definite portion of the fusti is not

paid for, and the rest is paid for as if it were pure cloves.

The portion not paid for is called the tara.

Iu the first question 1 lb of cloves which holds 18sazi of

fusti is worth 7 grossi, what is the value of 594 lb ?§ It is

explained that by custom 2 sazi are subtracted from the

amount of fusti in the lb, and that half of the remainder

is the tara, the rest being paid for as if it were all pure cloves.

Thus in this case 2 sazi are subtracted from 18 sazi. leaving

16 sazi, and half of this, viz. 8 sazi, multiplied by 594 gives

66 lb, which is the tara on 594 lb. Subtracting 66 lb (die

e la tara de 594 lb) there remains 528 lb, which is ' el neto de

tara', and at 7 gr. the lb is worth 154 ducats.

In the second question ||,
which is of the same kind, and

subject to the same rule, lib of cloves, which holds 15 sazi

6 karats of fusti, is worth 8^ grossi, what is the value of 490 lb

7oz? Here, taking otf the 2 sazi, 13 sazi 6 karats are left:

the half of this is 6 sazi 15 karats which multiplied by 490j7^

* pp. 47-51'.

i p. 65'.

t p. 63.

§ p. 62. The meaning is that 1 lb of cloves holds 18 sazi of fusti, and that 1 lb

of pure cloves is worth 7 grossi. A similar want of exactness occurs in many other

questions, but the meaning is generally free from ambiguity. The tables of weight

and money used by Borgi are : 24 karats make a sazo (or sazzio or saggio), G sazi

(or sazzi or saggi) make an ounce, 12 ounces make a pound: 32 piccoli make a

grosso, and 2-1 grossi make a ducat.

||
p. 62'.
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gives 45 lb 1 ounce 4 sazi 2| karats, which is the tara on
490 lb 7 oz (e tanto tien de tara 490 lb 7 oz).

It will be seen that there is no separate price for the fnsti:

its inferiority to the cloves is taken into account by the fact

that a portion of it is not paid for.*

Oalandri (1491), Pellos (1492), § 112.

§ 112. In Calandri (Florence, 1491) there are no questions

involving tara, nor is the word used. In Pellos (Turin, 1492)

the word seems only to occur on (p. 59) in connection with silver

which besides fine silver contains 'dross or tara' (brut ho tara).

Paciolo (1494), §§ 113-114.

§ 113. In Paciolof (1494) there are several questions of the

same kind as those in Borgi, in which tara is given as a per-
centage, and in one question (relating to wool) the tara is

8lb in 1000 lb. The word datio is generally used instead

of messetaria for the percentage tax on the total cost of the

merchandise.

In the first example 4 percent is taken off for tara (abattedo
tara. 4. lb per ceto)$ ; in the next 6^ per cent is taken off for

dono (abattendo di dono. 6^. lb. per celo), and in the next
3 per cent is taken off for usage (abattendo per vsaza.3 .lb per
ceto). The deduction for usage is treated as tara, but dono
is equivalent to 'tara auf den centner', i.e. in this example
C>\ is given with the 100, so that the gross weight is reduced

in the proportion of 106^ to 100 to obtain the net weight.

Thus tara is a percentage to be subtracted, and dono is an
extra amount which is given with 100 lb§.

In another example in which 100 lb ot new wax is worth
12 ducats and 100 lb of old wax is worth 8 ducats, it is

required to find the value of 987 lb of wax of which 46 per

* If 1 lb of cloves contains I sazi of fusti, this rule is equivalent to paying for

all the fusti at the rate of \k + -.\g per lb, where g is the value of a pound of
pure cloves. ^ l '

t "Suma de Arithmetica Geometria Proportioni &, Proportional ita" (Venice,

1494. See§<j(p. 4).

J In this example the amount of the merchandise is 987 lb, on which 4 per cent
is iSy,4;*,, and Paciolo says that by mercantile usage the fraction is to be ignored,
and '.i'J taken as the tara because T̂ j is less than

fifo ; but if the remainder had
exceeded half of the divisor the tara would be taken to be 40. Boigi did not take
the nearest whole number : he merely discarded the fraction. Thus in a question
on p. 4'.)', in which tara of 8J per cent is to be taken from 38171b, he finds that
this amounts to 3301b and 80g hundredths of a lb, but he throws off the fraction and
treats it as 3:S0 lb. It will be seen that succeeding writers followed Paciolo's rule.

§ When the abatement is r percent for tara, the gross weight is reduced ia

the proportion of loo to 100— r, and when it is r per cent for dono, it is reduced
in the proportion of 100 + r to 100.
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cent is old, taking off dono at 3 per cent from the new,

tara at 4 per cent from the old, and datio at ?>\ per cent.

This example is clearly intended to exhibit the difference

between tara and dono.

In another question the value of 9876 lb of red copper is

required, each 1000 lb containing 250 lb of tin, 643 lb of copper,

and the rest of lead, the prices of tin, copper, and lead being 90,

96, and 24 ducats respectively per 1000 lb, 4 per cent being taken

off from the tin for dono, 10 lb per 1000 lb from the copper

for tara, and 12 lb per 1000 lb from the lead for waste (abatt-

endo dono del stagno . 4.1b per cento: e tara del ramo.lOlb
per migliaro: e callo del piombo. 12.1b per migliaro). There
is also a final charge of 6 per cent for the tax and expenses.

In this example three different kinds of deduction, dono, tara,

callo occur.*

§ 114. Paciolo gives an example involving pure cloves

and fusti in which the fasti is treated in the same way as in

Borgi's two examples. In this example 1 lb of cloves is

worth 5j grossi, and holds 12 saggi 20 karats of fusti and
leaves (antofani), and it is required to find the value of 24001b.

It is explained, as in Borgi, that 2 saggi are taken away by
custom and half of the remainder is the tara, which in this

case is 5 saggi 10 k. This multiplied by 2400 gives 180 lb

6 ounces 4 saggi, which subtracted from 2400 lb leaves 2219 lb

5 ounces 2 saggi ; and this at 5| grossi the lb produces 485

ducats 12grossi 2§ piccolif.

Paciolo also calculates the messetaria at 2 per cent on this

amount.
There is also a question in which the fusti is paid for

separately, viz. lib of pure cloves is worth 6gr: lib of

fusti is worth 3gr: and lib of husks (capelletti) is worth

2gr: what is the value of 2400 lb which contain 12 saggi of

fusti per lb and 14 saggi of husks per lb, taking away 2 (or 3)

per cent for messetaria?

Tagliente (1515), § 115.

§ 115. Tagliente in his Libro de abaco\ (1515) has questions

and explanations similar to those in Borgi and Paciolo, some

* The examples referred to in the text are nos. 11 — 1 U on pp. 61, 61'.

t p <>"2 There is a mistake in Paciolo"s working of this example: he gives

485 due. 11 gr. H% as the value. The mistake occurs in the reduction of 2'21'Jlb

5 ounces 2 k. to karats.

I The title of the book is "Libro de abaco che insegnia a fare ogni raxone

marcadantile A apertegare le terre con larte <li la giometria & altie uobiliasitne

raxone °traordinarie co la tarifa come raspondeno li pexi it monete de molte terre

del mondo con la inclita citta de. Venetia £1 qual Lihro se chiama Texauro

vniuersale Concesso per lo Sereuissinio Dominio Venetiano per auni diexe cfi gra".
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of the questions being identical. His explanations of the

terms involved are more detailed : thus in the explanations

of tara he states that it is a deduction arranged between the

buyer and seller on account of impurities in t lie merchandise,
or tor any otlier cause, and he mentions that in deducting- the

tara it is usual to take its value to the nearest lb, thus

neglecting a fraction less than }j lb. This explanation he
attaches to the first question in which tara occurs (no. 54,

Fiiii'), viz. if 100 lb is worth 4 ducats what will 987 lb be
worth, taking off tara at 4 per cent? This is also Paciolo's

first question in which tara occurs (except that Tagliente has

changed 10 per cent to 4 per cent) ; and it is the question in

which Paciolo explains that the tara is to be taken to be the

In the introductory address Hieronymus 'tagliente (Hieronimo taiete Citadin
venetiano), after praising arithmetic "which iscalled one of the seven liberal arts ",

states that in his youth, with the help of his kinsman and master Giovanni Antonio
Tagliente, pensioner of the Venetian State, he diligently studied the works of the
best authors and was led to compile the present work (Di die in questa mia verde

e iuuenil etade ho voluto cti laiutto del mio clarissimo cosanguineo &. preceptore

Meser Iouani Antonio Taiente prouisionato per sue viitu dal Serenissimo dnio
Venetiano. vedere con ogni studio & diligentia diuerse oppere fabricate per

exceletissimi auctori. & no co poca mia fatica & industria ho voluto comulare &
coponere la pressete oppera). A second edition of this work was published in 1520.

In 1525 Hieronymus Tagliente published an enlarged edition, almost amounting
to a new work, which forms the subject of §116.

In 1527 the elder 'tagliente published an Arithmetic with the title "Opera nova
che insegna a fare ogni ragione di mercantia. Et prima a sapper releuare ogni

mimero, Poi a Moltiplieare, Partire, Somare, Sottrare con le sue proue, la Regola

del tre con laquale si puo fare o-;ni ragione di Mercatia, cioe come saria a dire, Se

la libra, el centenaro o tier el migliaro di una Mercantia uale tanti danari, che ualera

tante libre. Et anchora a sapper fare le Ragioni delle Compagnie & baratti on
altre molte ragione. Et a pertegare le terrevfe muri con arte Giometricale come nell-

opera uederete". The colophon is "Stapado per Bernadin Venetian de Vidali. M, D,

XXVII ". I have given in full the title of this book (which is in my own possession)

because I have not met with any description of it, or found any reference to it

indicating that it is different from that of 1515. It is put forth as the work of

Giovanni Antonio Tagliente; but in the book of 1515 he is mentioned merely as

having assisted Hieronymus Tagliente in the preparation of that work. In the

address to the readers (Alii benigni lettori. Iovaui Antonio 'tagliente) nearly the

same words occur, as were used by Hieronymus in 1515, in stating that having

studied the best authors {hauendo io veduto Diuerse opere fabricate per Excelleu-

tissimi Auttori,i no con poca mia fatica) he has wished to compose the present

little woik which " will teach and instruct lucidly with great facility and brevity ".

As regards the contents of the book, a great portion of it is almost a reprint of that

of 1515, but there are some variations. The paragraph numbered 20 in I he 1627

edition does not appear in that of 1515, so that although those numbered 8 to 12

and 14 to 19 are the same in both editions, those numbered 20 to 137 m the 1515

edition correspond very nearly to 21 to 138 in the 1527 edition, 138 being the last

of the numbered paragraphs in this edition. '1 he 1527 edition is thus similar to

that of 1515 in contents, and it has the sane' woodcuts in the text, but it is different

in form, being of quarto size, while the editions of 1515 and 1525 are octavo, as

also are all the reprints. There is ilso a different engraving on the back of the

title-page.

Besides the editions of 1515, 1520, and 1527, and the book of 1525, which all bear

the name of Tagliente, there are a great number of editions of the book of 1515

(but with different wood engravings) which have no nuthor'fi name, date or place.

These presumably are pirated editions. After a time they have date and place, but

VOL. LI. «
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nearest integral number of lbs. After no. 56 (Gii) Tagliente
states that the niessetaria in Veniee, called gabella in other

cities, is a tax or toll of 2 per cent (or more or less as notified)

of the value of the goods, half of which is paid by the seller

and half by the purchaser, and that the whole amount is

handed over by the buyer to the tax-officer, so that if the

amount due to the vendor is 100 ducats, the purcliaser pays
99 ducats to him and 2 ducats to the tax-officer. In the

examples, the percentage by which the niessetaria is expressed

refers to that portion of it which is paid by the vendor and
not to the whole tax. Thus in no. 56 (G i') where 100 lb

of sugar is worth 15 due. 14 gr. and the question is " che val

lire. 9745. abbatendo de niessetaria oner de gabella ducati. 2.

per .100.", the value of the sugar is found to be 1518 due.

14 gr. 9 p., and 2 per cent of this, viz. 30 due. 8 gr. 29 p., is

subtracted leaving 1488 due. 5 gr. 12 p.*, which is what the

vendor receives, and presumably the sugar costs the purchaser
1548 due. 23 gr. 6 p., of which he pays 60 due. 17 gr. 16 p. to

the tax-officer, who therefore receives 4 per cent on the value

of the sugar.

After several questions (nos. 57, 65, 67, 68) involving both
tara (always expressed as a percentage or with reference to

1000 lb) and niessetaria, Tagliente gives (no. 81, Iii') Paciolo's

question about the 9876 lb of red copper, which was quoted
in § 113. The numbers are the same, but the 4 per cent

dono on the tin is replaced by a deduction of 4 per cent

(abatedo del stagno lire. 4. per cento & tarra del raine lire.

10. per miaro & per calo del piombo lire . 12. per miaro), the

reason probably being that he has not yet explained dono.

Tagliente's name is still omitted. In vol. xvi of tlie Atti dell' Accad. Ponlif. de'

nuovi Lincei (1863), pp. 139—228, Prince Boncompagni lias given an elaborate
account of a great number of editions, and lias reprinted from each a portion (viz.

paragraph 8), occupying more than a page, for comparison with the original edition

of 1515. Besides the numerous undated editions, Boncompagni describes others
printed at Milan in 1541 and 1517 by lo. Antonio da Borgo, and at Venice in 1548
by Giouanni Fadouano.

Prince d'Essling, in vol. iii., pp. 299—305 of " Les livres & figures Venitiens
de la fin du xve Siecle et du commencement du xvie " (Florence and Paris, 1909)
gives an account of the books of 1515, 1520, 1525, and of eight other editions, and
reproduces some of the engravings. He regards the earliest anonymous editions
as pirated (contrefacons), and, from their engravings and ornamentation, places the
dale about 1520. These pirated editions have on the border of the last page "Opus
lucha atoniode uberti fe I uinetia". Essling states that Lucas Antonio di Uberti
was the engraver: but lie has been supposed by some (e.g. by Bibii) to be the
author, and the book has been catalogued under this name. In Earn Arithmetica
the work of 1525 is described, but the other editions are not differentiated from it.

All the pirated editions that I have seen, or seen described, are copies of that of
1515. It may be mentioned that the misprints in them are more numerous than
in the original edition.

* Through a wrong subtraction Tagliente gives this result as 1477 due. 5 gr.

12 p. The error is repeated in the book of 1527 (no. 57, Fiv'j.
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This explanation is given subsequently on Iiiii' In the solution

of no. 8G (which is Paeiolo's question about the 987 lb* of

wax quoted in § 113), where Tagliente states that the dono of

3lb per 1001b means that 103lb is given for the price of 1001b.

The only question involving tusti which he gives is the

same as Borgi's question (quoted in § 111) of the 594 lb of

cloves in which 1 lb of cloves contains 18 sazi of fusti : and

he explains, as in Borgi, the procedure of taking 2 sazi from

the 18 sazi and halving the remainder to obtain the tara.

Tagliente (1525), § 116.

§ 116. This workf of Hieronymus Tagliente differs from

that of 1515 (considered in the preceding section) in being

more comprehensive {e.g. it includes fractions) and in con-

taining more examples: but the general explanations of tara,

messetaria, etc. are omitted. There are a number of questions

in which tara alone is deducted (K4, K4', Ll, Ll'), in which
messetaria alone is deducted (L 2, L 3', L4'), and in which

both are deducted (L2', M.2). in the question on L 2', the

value of 675 lb [misprinted 375 lb] is required ' abbattendo de

tara £j%\. e de mesetaria. lg-P ceto'. He has one dono

question % (M 1) in which 20 per cent is given, so that the

purchaser receives 120 lb for the price of 100 lb.

There are two tusti questions, in one (0 3) of which 1 lb

of cloves contains 18 sazi of fusti, and it is explained in the

question itself that after deducting 2 sazi, half the remainder

is tara (La X de garoffoli netti val gr. 15 . . . die atien de

fusti sazi . 18. p $_, e sapi chel se da sazi . 2. per X e del resto

la ^. son la tara). In the other (0 3') the pure cloves and
the fusti are paid for at different rates. A question of the

same class (M2') relates to oil in which a mier of oil contains

13miri 15 lb of pure oil, and the prices per mier of the pure

oil and of the crude oil are given. There is also a question

(Oi) of the same kind as that relating to red copper in the earlier

book of 1515 (§ 115), but without any tara on the lead §

* Printed 3871b, which is probably a misprint, as all tlie oilier numbers in the
question are the same as in 1'aciolo : but the change is of no importance, as the
answer to the question is not given.

t "Opera die insegna A fare ogni Ragione de Mercatia Et apertegave le Terra
Con arte giometrical IntitolataComponimetodi arithmetics. Con gratia Ai preuilegio

M.D.X X V." In the address to the reader (Al benigno lettore Uieronytno Tagliente)
the author refers to the earlier work (of 1515), in which he was helped by his

kinsman, and fays that he has been urged by his pupils and friends to compose a
larger and more perfect work.

J
'• El 100 della chassia die se ne dona. 20. per ceto val duchati. 18. gr. 20. die

valera lb 1150. e batti de messetaria due. 2. gr. 14. per cento"'.

§ There must be misprints iu the question as the amount of copper and tin in

I mier exceeds 1 mier.
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Up to no.' 50 (I iii) the contents of this book (excepting'

for the portion relating to fractions) are generally the same

as in that of 1515, but. after no. 50 the questions and paragraphs

(which are not numbered) are quite different up to Xiii',

where a paragraph is numbered 143, and the paragraphs

143—158 (geometry) are the same as in the book of 1515.

Thus Hieronymus Tagliente has practically rewritten the

arithmetic after no. 50.

It is strange that the work of 1515 which, like that of

1525, bears the name of Hieronymus Tagliente should have

been republished (as mentioned in the note to § 115) in 1527

with the contents practically unaltered, but in a different form

and with a different title, by Giovanni Antonio Tagliente,

who was only mentioned in the edition of 1515 as having

assisted Hieronymus in its preparation. So far as I know
there was no other edition of the work of 1525 (which

Hieronymus claims as entirely his own), nor was it pirated.

Feliciano (1526), § 117.

§ 117. Feliciano* only gives two questions involving tara :

in one a tara of 6 per cent is deducted (abatendo de tara lire

.6. per cento) and in the other there is a tara of 4 lb per cent

and a messetaria of 1 ducat per cent (battendo de tara lire

.4. per cento e pagar de mesetaria ducat i vno per cento).

Sfortunati (1534), § 118.

§ 118. Sfortunatif gives Paciolo's two questions: if 100 lb

is worth 16 lire what is the value of 987 lb, taking off 4 per

cent tara; and if 100 lb is worth 12 lire what is the value of

987lb, taking off 6Hb per cent for dono? In connection with

the first he explains that the nearest integer (expressed in lbs)

is to be taken as the tara. In the second question he explains

that dono is the contrary to tara, as instead of being sub-

tracted from the 100 lb it is added, so that the question

becomes: if 106?,- lb is worth 12 lire, what is the value of

987 lb?t

* "Librodi Arithmetical Geometria specnlatiua & praticale : Composto per

maestro Francesco feliciano da Lazisio Veronese hitituhito Ncala gramaldelli :

"

(Venice, 1626). A reproduction of the title-page is given on p. 147 of Rara
Aritkmttica. The book hIso contains algebra, and there is not very much commercial

arithmetic. The two examples involving taia occur on pp. G4' and H i.

t "Nvovo lvme libro di arithmetics . . . Composto per to acutissimo prascruta-

tore delle Archimediane & Euclidiane dottrine Giovanni Sfortvnati da Siena"

(Venice, 1634). A facsimile of the title-page is given in Rara Arithmeticu, p. 17tJ

;

and on pp. 17 1. 1 77 other editions are described.

I The questions described in the text are Propositions 33-39, pp. 45-46'.
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The next question is: 100 lb of French wool is worth 16

lire 10 soldi, what is the value of 24 bales which weigh in all

840 lb, taking off for bands, cordage, and sacks 74 lb per bale,

and tara 5 lb per 100? Here 7^ multiplied by 24~gives 1801b,

which subtracted from 840 1b leaves 660 lb: the tara is 5 per

cent of this amount, viz. 33 lb, and therefore the result is

obtained by finding' the value of 627 lb at 16 lire 10 soldi for

100 lb. It will be noticed that the deduction for the weight

of the sacks, etc. is not called tara, and that the tara is a per-

centage on the actual weight of the merchandise itself.

In the next question he makes a deduction by usage
(abbattendo per vsanza) of 3 lb per 100 lb, and of lA per cent

tor datio. The deduction by usage is treated in the same
manner as tara.

The next question relates to a quantity of new and old

wax, the old wax, which is 45 per cent of the whole, being

led need by a tara of 2^ per cent, and the new by a douo
of 2 per cent, the datio on the whole being 3 per cent. He
then has a question relating to three kinds of wool in which
the deductions are respectively for tara, dono, and usanza, as

well as the messataria.

This is followed by a question involving fusti in which
lib of cloves is worth 6| grossi and contains lOsaggi and
12 carats per lb of 'fusti and antofani '. He gives the usual

rule of subtracting 2 saggi from the lOsaggi 12 carats and
taking half the remainder for the tara.

Cataneo (1546), § 119.

§ 119. Cataneo* has a simple question in which the tara

is 5 per cent, followed by one in which 100 lb cost 18 lire

10 soldi, and it is required to find the value of 3 bales weigh-
ing 750 lb, taking away 4 lb per bale for sacks and bands,

and 5^ lb per 100 for tara. Here the deduction for sacks,

etc. is not called tara, and the tara is a percentage on the

merchandise itself. In his next question a deduction of 3 lb

per cent is made 'per usanza', and there is a datio of 2.
1

, ducats

per cent.

He then gives a dono question, but uses the word dando :

" che uarranno £-658. dando ne sopra X-5. per. 100?" He
explains, as in Sfortunati, that this is the contrary to tara,

and that the 5 is to be added to the 100.

* " Le praticlie delle dve prime niathematiclie di Pietro de Catani da Siena libra
d'albaco e geometiia" (Venice, lulti). The title-page is reproduced in Rant
Arithmetical p.

-

J13.

G2



86 Dr. Glatsher
t
On the early history of the signs

The next question relates to two kinds of wool, the tara

on one kind being 4 per cent and on the other 3 per cent, the

me.ssetaria being 2 ducats per cent.*

He lias no question in which f'usti occurs.

Ghaligai (1548), § 120.

§ 120. Ghaligait has only one question in which tara

occurs: ' El Migliaio d' alcuna cosa ' is worth 164 fl. 18 s. 3d,

what will be the value of 5876 lb 9 ounces, the tara being

5 lb ' per centinaio '?

Tartaglia (1556), §§ 121-123.

§ 121. Tartaglia's Trattato di numeri et misure% is a large

and comprehensive work containing elaborate explanations of

tara, messetaria, fusti, etc. He states that tara is a deduction

from the merchandise of so much per lb, or 100 lb, or 1000 lb,

or other definite weight or measure, on account of its being

dirty or moist, in accordance with custom : and that messe-

taria is a tax in Venice which is paid both by the buyer and

seller, and is a percentage on the amount paid for the goods

and not on the goods themselves. The buyer retains the

seller's portion of the tax, and pays the whole tax {i.e. his

own portion and the seller's also) to the tax-officer. As an

example, Tartaglia supposes that the messetaria is 2 ducats

per cent, and that the amount is 300 ducats: the buyer then

pays 294 ducats to the seller, and 12 ducats to the tax-officer.§

This explanation makes clear, what could only be inferred

from Tagliente, that when the messetaria is stated to be, say,

2 per cent, this means that both the vendor and purchaser

pay 2 per cent, so that the tax-officer receives 4 per cent.

Tartaglia then gives an example involving tara, and two

involving tara and messataria, the tara being a percentage

on the weight of the merchandise, and the messetaria a

* These questions occur on pp 27, 27'.

t
" Pratica d'aritlimetica, di Francesco Ghaligai ..." (Florence. 1548). The

classes of commercial questions which involve a deduction for tara seem almost

peculiar to the Venetian Arithmetics. In this work, published at Florence, there

is but one such question, and in Calandri (Florence, 1491) and Pellos (Turin, 1492)

there are none (-5 112). Ghaligai's book also contains algebra. The example

quoted in the text occurs on p. 29'. This is the second edition, the original edition

having been published in 1521. Ghaligai died in 153(3 (Boncompagni, Bullettina,

vol. vii
, p, 4.s.">).

J
" La prima parte del general trattato di nvmeri, et misvie di Nicolo Tartaglia

..." (Venice, 1656).

§ This account of tara and messetaria occurs on p. G6'; but he gives on p. 151'

an even fuller explanation of messetaria, and states that the buyer has to keep

back the teller's portion or else pay it himself.
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percentage on the amount of money which is the net value

of the merchandise.

He then gives a question relating to tin, in which the tara

is 5 lb 8oz per mearo [i.e. 1000 lb] and the messetaria is 4 due.

18 gr. per cent. The next question relates to oil in which

there is a deduction for waste (abbattendo di callo) of 6 lb 9oz

per mearo, and also a messetaria.

The next question relates to the value of 19 carghi 48 lb of

pepper, 'abbattendo di tarra £,9 oncie 2. per cargo', and also

a messetaria and another tax.* A cargo is 400 lb. There

is a similar question on p. 105 in which the tara is also 9 lb

2 oz per cargo.

§ 122. On p. 70 Tartaglia gives a question about, cloves

in which 1 lb of pure cloves is worth 16 gr. 11 p., and 1 lb or

fasti is worth 3 gr. 8 p., and lib of cloves contains 6 sazzi

7 carats of fusti. He states that in Venice the custom is for

3 sazzi of fusti in the lb to be paid for as pure cloves, and that

only the amount of fusti in excess of 3 sazzi is to be paid tol-

as fusti. Thus in this case 68 sazzi 17 carats is paid for as

pure cloves and 3 sazzi 7 carats as fusti.

f

But on p. 155' lie gives a question in which 3 sazzi ot fusti

in the lb is to be paid for as good cloves, and half of the

remaining fusti is also to be paid for as good cloves, which

he says is in accordance with custom, thereby following the

rule given by Borgi and his successors, except that the amount

of fusti paid for as pure cloves is 3 instead of 2 sazzi : but in

the next question the values of the pure cloves and fusti are

given, and 3 sazzi of fusti is treated as good cloves, as in the

example just quoted from p. 70. Thus it is clear that in

Tartaglia's time both customs existed.

* The explanation and examples mentioned in the text occur on pp. (J6'-70.

The examples are nos. 1—7.

f Tartaglia considers this procedure unfair, for in his view the rule that 3 sazzi

of fusti in 1 lb of cloves should be treated as pure cloves means that for every ti'.)

sazzi of pure cloves 3 sazzi of fusti should be counted as pure cloves, so that the

amount of fusti to be paid for ;is pure cloves should be ,

1
., of the amount of pure

cloves instead of .2
'

4 of the whole amount of the pure cloves and fusti. It is clear

that if the cloves contain a good deal of fusti the customary procedure is to the

detriment of the buyer, and Tartaglia says the procedure was adopted to simplify

the calculation and to benefit tin- seller.

1 1 g is the cost of lib of pure cloves and,/" the cost of 1 lb of fusti, and if 1 lb of

cloves contains n sazzi of fusti, then (since there are 72 sazzi in a lb) the value of

lib of the cloves, according to the customary procedure, is

(
l -*72

3

)
9 + "-TTf'

U,at i8 tlT ff+ IT ''

and according to Tartaglia it should be

('-SX'+iiM'-C'-nM}* •* ta V'+tt/.
the difference in favour of the seller being 1S\^ (n-3) (g+f).
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§ 123. On pp.100'—106 Tartaglia gives a series of questions

to explain the manner in which tara and messetaria are dealt

with in Venetian practice. On p. 103 he states that in sub-

tracting the tara its value to the nearest lb may be taken. On
the same page he has a question in which there are two taras.

The value is required of 27 sacks of cotton, which weigh in all

17061 lb, at the rate of 70 due. 14 gr. 16 pic. the mearo, taking

away for tara, on account of the sacks, 4 lb per sack, and from

the remainder again taking away for tara 3 lb 6 oz per mearo
(abbattendo di tana, per conto di sacchi £4 per sacco, & del

vestante abbattendo anchora di tarra lire 3 oncie 6 per mearo),

and 2 due. 8 gr. per cent for messetaria. He begins the

solution with the words " Per soluere questa, & altre simili,

ehe hanno due tarre . .
."

This is the first example I have met with in an Italian

book where the weight of the containing vessel is called tara,

and almost the first in which it is mentioned in the question.*

Later on he gives two other questions in which the weight

of the sacks is taken into account (nos. 8 and 9, pp. 152', 153).

In the first a mearo of rice is worth 6 due. 3^gr., and the

question is to find the value of 5326 lb (abbattendo di tarra per

conto di sacchi, & di sporco iL5«t per mearo), and l\ due. per

cento for messetaria. Here the weight of the sacks and the

allowance for dirt or impurities are included as tara in a single

percentage.

The next question is to find the value of 9 sacks of cotton,

which weigh 5687 lb each, at the rate of 70 due. 14^ gr. the

mearo (abbattendo prima di tarra per li sacchi £4 per sacco,

& del restante anchora tarra £3^ per mearo, & di messettaria

ducati 2 gr. 8 per cento). Here as in the question on p. 103

the tara for the sacks and the percentage tara are separated.

On pp. 153, 153' Tartaglia gives two questions, relating

to skins, in which an extra number of skins is given, but the

word tara is not used. In the first 100 skins are worth 18^
ducats, and 8 more are added as a gift (donandone sopra pelle

8. per cento), and in the second 5697 skins cost 34- ducats per

mearo, and by custom 60 skins per mearo are given (per

vsauza se ne dona sopra pelle 60 per mearo).

Remarks on the use of the word tara by Italian and German
writers, §§ 124-125.

§ 124. The early Italian writers are consistent in their use

of tara. which was a deduction from the gross weight agreed

* Sfortunat.i gave an example in which a deduction was made for sacks

cordage, etc. (.'iee§118).
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upon between buyer and seller on account of impurities, or for

any otber cause, and was expressed as a percentage on t lie

gross weight. The word was not used for the deduction made
for the weight of the sacks, casks, etc. Sfortunati makes a

deduction for sacks, cordage, etc., but he does not call it tara

(§118). Tartaglia, however, in his Trattato of 1556, has

questions in which there are two taras, the first being for the

weight of the sacks (§ 123). The general use of the word tara

is as an equivalent to waste, and it is not paid for.

The word dono, or some word which expresses giving, is

used when the abatement is made by adding an extra amount
to the 100 lb of goods, the whole to be paid for as 100 lb, or

adding an extra number to the 100 articles, to be paid for as

100*: so that if r is the addition the deduction is made in the

proportion of 100 + r to 100. Tara is not used in this sense.

Fusti only occurs in connection with cloves. It was
allowed for either by a simple rule (§§ 111, 114-116, 118, 122),

or was wholly paid for at a lower rate (§ 116), or, after a certain

small proportion had been allowed to be counted as pure cloves,

was paid for at a lower rate (§ 122).

§ 125. Passing now to the German writers, we notice that

Widman often makes a deduction for the wood of the containing

vessel, which is not usual in the Italian books: that he uses

the word fusti correctly (i.e. it is an inferior substance mixed
with the cloves, and which has to be paid for): and that he

gives a question relating to saffron in which there is absolute

waste (unreyn) that has not to be paid for. Grammateus is

the first to use the word tara, and he attributes to it its true

meaning of waste: each pound ' holds' so much tara, and the

tara is not paid for: it. corresponds to Widman's 'unreyn' in

the saffron question. In subsequent German books tara is the

weight of the containing vessel or receptacle; but even when
expressed as a percentage auf or in the centner it represents

only this weight, and does not include a deduction for im-

purities or any other cause. The distinction between aif/and

in the centner was clearly convenient, and was (I think) an

improvement on tara and dono, for dono was in principle also

a tara, though differently expressed and slightly different in

amount.
As a rule fusti received its true meaning of inferior goods

mixed with 'pure' goods, and was generally used in connection

with cloves; but at length its proper signification became
confused with the deduction for the weight of the receptacle,

* The addition is sometimes made to 1000 lb or 1000 articles.
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and it was used where we should have expected tara. Koebel

seems to have regarded t'usti as referring to the weight of

the containing vessel as much as to impurities, and Spenlin

almost restricted it to the weight of the containing vessel,

though ' thara fur. ausswurff' occurs also under the heading

of Fusti.

In the German Arithmetics the whole of the fusti in cloves

was always paid for at a lower rate than the pure cloves, and

I have not met with a single question in which the Italian

practice of regarding a certain portion as waste and paying

for the rest as pure cloves was followed.

The supposed mention of signs of addition and diminution

by Peurbach, § 126.

§ 126. Reference has already been made* to signs of

addition and subtraction which were mentioned by Peurbach.

Drobisch considered that these signs were not + and -, but

merely signs that were left to the reader: but Treutlein

(partly influenced by a manuscript which was afterwards

found to be of later date than he had supposed) took the

contrary view, and considered that they referred to + and —

.

As Peurbach died in 1461, any reference by him to signs

for addition and subtraction, whatever might be the signs he

had in his mind, would be of great interest ; and I have

therefore examined with some care all the editions of

Peurbach's Algorithmus to which L had access, in order

to ascertain what evidence they afforded that he used, or

recommended t lie use of, signs for addition or subtraction.

I found the investigation less simple than I had expected,

on account of the different titles under which the Algorithmus

appeared, and some variations in the text. It spite of these

differences there was a close agreement in the text of the

editions up to 1536, all of which seem to have been derived

from a manuscript first printed by Winterburg at Vienna

about 1500. But in 1536 a much larger Arithmetic, having

Peurbach's name as that of the author, was published at

"Wittenberg; this treatise contained not only the earlier work
relating to integers, but also a long coniinuation relating

to fractions, the rule of three, the rule of false, proportions,

etc. It is in the explanation of the rule of false in this work
that the \signum additionis' and 'signum diminutionis' occur.

It is of course possible that at that late date a neglected

manuscript of Peurbach's on arithmetic came to light and

* In the last note on p. 9.
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was published: but it may be that Peurbach was not the

author, and that the work belongs to a later period.

I now proceed to describe the different editions of Peur-

bach's Arithmetic which I have seen, including that of 1536

(§§ 127—136). The discussion of the whole subject follows

and occupies §§ 137—151.

The Vienna Algorismus (c. 1500), denoted by Al,, § 127.

§ 127. The earliest version of Peurbach's Algorithmus
that I have met with (and which is certainly a very early one)

has the title "Opus Algorismi Iocudissimu Mgfi Georgij

peurbachij Wieunensis (peeptoris singularis Mgfi Ioannis de
monte regio) sacreque mathematice inquisitorte suptilissio

suma cii vtilitate editu".* The book consists of six leaves,

the first of which has merely the word 'Algorismus' on the

recto: the title quoted above is at the top of the recto of the

second leaf. The first paragraph or chapter has no special

heading, but the words in the first line 'jXumeri propositi

repntatonem ' are printed in larger letters. The other

chapters have special headings, ' l)e Additione', ' De Sub-
tractione ',

' De Mediatione ',
' De Duplatione', ' De Multi-

plicative', ' De Diuisione', ' De Progressione ', following

which, but without a special heading, is rather more than

a page on the extraction of the square root, beginning with

the words "Cuiuscunque nueri quadrati vel maximi quadrati

sub numero proposito cotenti radice quadrata extrahere", and
ending with the words 'accipere potes'; followed by " Finis

Algorismi Magistri Georgij de Peurbach". After this Finis

there are several paragraphs, occupying about two pages,

with separate headings, ' De regula aurea siue de tre ',

' Secunda liegula que societatis vel mercatorum appellatur

tali declaratur exemplo ', ' Sequuntur nuc enigmata quorum
primti est istud', ' Aliud enigma', 'Aliud enigma', 'Aliud',
' aliud '. The colophon is "lmpressum Vienne per Ioannem
Winterburg". The copy I have described is in the British

Museum Library. The date is given in the catalogue as

c. 1500, which is probably correct. This edition (by Winter-
burg of Vienna) will be referred to as Al,.f

It will be noticed that there are two misprints in the title:

Wieunensis for Wieunensis, and inquisitorte for inquisitore.

Except in the Hrst paragraph (where the initial letter is very

* In tlie titles and other quotations I expand those contractions which cannot be
reproduced for want of the requisite type.

t This edition is * 13000 in llain. See § 148.
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large) spaces have been left for the Initial letters, which have

not been inserted, and in two places (under ' De Mediatione '

and ' De Duplatione ') spaces have been left for the fraction £
which has not been inserted.

Other copies of this edition are mentioned in § 148.

Another Vienna edition, denoted by Al
2 , §128.

§ 128. In the Cambridge University Library there is

another edition with almost the same title, and by the same
printer, Winterburg. The title is "Opus Algorismi locudis-

simu Mgri Georgij peurbachij Wiennesis (peeptor singularis

Mgri loannisde monte regio) sacreque mathematice inquisitore

sbtilissio suma cu vtilitate editti". This title differs from that

of the book just described in the correction of the two mis-

prints, and in having 'preceptor' instead of ' preceptoris'.

The colophon is " Impressum Vienne per Ioannem Winter-

burg".
The whole type has been reset, but the pages are the same.

The spaces for the initial letters are still left blank, but the

fraction ^ has been inserted where there were blank spaces

in Al,.

This is presumably a later edition than Al,, but I cannot

assign any probable date to it. It will be denoted by Al
}

.

A comparison between Al, and Al
3

is given in § 137.

The Leipzig edition of 1503, § 129.

§ t29. In 1503 an edition of the Algorismus was published

at Leipzig, which differs from the Vienna edition Al, in

portions of the text, by the addition of an example to each

rule, by the insertion of a chapter on cube root, and by the

inclusion as part of the Algorismus of the paragraphs that

follow 'Finis...' in Al,. The title is almost the same as in

Al,, except that the final word ' editum ' is replaced by
"exemplis accubice radicis extractione allcuiatoque procedendo

modo nuper digestum ".* The colophon is " Et tan turn de hoc

opere Algoristico Anno Christi Hiesu Millesimoquingentesi-

motertio per Baccalariu Martinu llerbipolen impresso".

In this edition the title occurs both on the recto of the first

leaf and at the top of the recto of the second leaf, the heading

* The complete title is "Opus Algorithmi iucundissimu Magistri Georgij
Peurbachij wiennensis (preceptoris singularis Magistri Ioannis de Monteregio)
sacreque Mathematice inquisitoris subtilissimi sumraa cu vtilitate exemplis ac
cubice radicis extractione alleuiatoque procedcndi modo nuper digestum". This

is the earliest dated edition I know of in which the change has been made from
Algorismus to Algorithmus.
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'Numeratio' is prefixed to the first paragraph; the other

headings are 'Additio', ' Subtractio ', etc., instead of ' De
Additione'/De Subtraotione',etc.; and the heading 'Radicum
extractio quadrata' is supplied to the long paragraph on square

root, separating it from the heading ' Progressio '. This is

followed by ' Radicum extractio cubica*. Then come 'Regula
aurea sine detre ', 'Regula Societatis', and three enigmata,

all of which were placed after the end of the Algorismns in

AI,. A very important addition is that an example is given

after each rule; thus as an example of addition 486 is added
to 5975; as an example of division 59078 is divided by 74;

under square root the root of 767376 is extracted, and similarly

for the other rules.

As partly indicated in the title, this is the Algorismus AI,

revised, enlarged, and provided with examples, which render

it much more complete and useful. It is to be presumed that

AI, represents the Algorismus as left by Peurbach ; and that

the editor of this edition has included what was not Peurbach's

is shown by the occurrence in the text of the rules and enigmata
which follow " Finis Algorismi Magistri Georgij de Peurbach "

in AI,. It may be noted that in this edition all the initial

letters are missing, spaces being left for them. The two
fractions ^ for which blanks were left in the 1500 edition are

inserted.

The Nuremberg edition of 1513, § 130.

§130. In 1513 an edition was published at Nuremberg
which resembles AI,. The title is "Georgij Peurbachij.

Mathematici omniti aeutissimi, institutioes in Arihtmeticam

:

cum alijs turn in primis adulescentibus necessarie". There
is a preface headed ' Ioannes Marius Rhetus Studiosis ', and
then comes ' Sequitur Opusculum Peurbachij doctissimi '.

The edition AI, is followed (there being no heading for

numeration), and the treatise ends with 'accipere potes' (the

portion relating to square root being left, as in Al
(

, under the

heading ' De Progressione '), after which is " Finis Algorithmi

Magistri Georgij Peurbachij". Then come the ' De regula

aurea...', the ' Secuda Regula...', and the five enigmata as

in AI,, after which other puzzle questions are added having

the headings ' Sequitur ingeniosa ratio inuestigandi : calculo

anuulum: quern quis e couiuis...', 'Alius modus idem inue-

niedi a Vadiano supostus ', followed by ' Finis '. The colophon

is "Nurnberge impressit Iohanncs Weyssenburger iSacerdos.

Anno. 15.13. Die vero xiiii mensis Aprilis".
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Thus this edition follows Al, both in the portion attributed

to Peurbach and in the rules and enigmata which follow it:

and there are also two other puzzle questions relating to the

detection of a concealed number. Where blanks were left in

Al, for the insertion of ^ the text runs right on in this edition,

without either the space or the ^, making the sentences un-
meaning. It will be seen in § 148 that this edition is a

reprint of a Vienna edition of 1511.

Tannstetter''s edition {Vienna, 1515), § 131.

§ 131. In 1515 Tannstetter published at Vienna in one
volume* five arithmetical works, one of which was Peuibach's
Algorithmus. It appears under the title " Opuseulu Magistri

Georgij Peurbachij doctiss.", and is printed as in Al,, ending
with the words 'accipere potes', which conclude the account
of square root. Then comes " Finis Algorithini Magistri

Georgij Peurbachij". The heading of the pages is "Algo-
rithmus Peurbachij ".

In the two passages where \ should have been inserted

the text runs on without it as in the 1513 edition, and other

small errors which were corrected in the Winterburg edition

AL, and in the 1503 edition, are left unaltered (§ 138). It is

surprising that Tannstetter should have reprinted the 1500

edition without any attempt at editing it, as is shown by the

fact that not even the ^'s are inserted.

The Wittenlerg edition of 1534, §§ 132-133.

§ 132. In 1534 an edition was published at Wittenberg,

having the title " Elementa arithmetices algorithmvs de

numeris integris auctore Georgio Peurbachio. de nvmeria
fractis, Regulis communibus, & Proporcionibus. Cum pre-

fatione Philippi Melanchthonis. M.D. XXX11II". The
colophon, which occurs on Evil' is " Impressvm Vitebergse

per Iosephvm Clvg. Anno M.D. XXX1I1I". At the head
of the first page (after Alelancht lion's preface) there is the

title "Opvscvlvm magistri Georgii Pevrbachii doctissimi ".

Except that the paragraph on square root has a heading,

the algorithmus is given almost exactly as in Al, (the Vs
being omitted and the text running on) up to 'accipere potes'.

* The title of the book is "(Jontenta in hoc libello. Arithmetic!! communis.
Proportiones breves. De latitudinibus formarum. Algorithmus. M. Georgij Peur-
bachij in integris. Algorithmus Magistri Ioannis deGmunden de minucijs pliisicis ".

The dedication begins " Georgius J'annstetter Collimitins : nrtium et .Medicine

doctor: et Mathematics in studio Viennensi professor ordinarius . . .
." I he

colophon is "Impressum Vienne per [oannem Singrenium l£xpensis vero Leonardi
<t Luce Alantse Eiatrum Anno domini. M.CCCCC.XV. Decinionono die Maij."
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These words end the recto of Bv (misprinted A v) and on the

verso under the heading 'Lectori' there is a statement* that

what precedes is by Peurbach, but that he either did not

complete his compendium, or intended it only for boys, as all

that was published in the Vienna edition has been faithfully

transcribed. A sequel has therefore been added to complete

the treatment of the subject. This consists of a ' Secunda

pars' relating to fractions, a ' Tertia pars' containing the

rule of three and the rule of false, with many examples, and

a ' Quarta pars', entitled ' De proportionibvs ex elementis

Evclidis, per Ioannem Vogelin.'

§ 133. Although this continuation had no connection with

Peurbach, and there is no indication as to who was its author,

it may be noted that in the rule of false the signs + and —
are used, and placed outside the errors, which are written

under the positions: thus (on E ii')

36\ /48

-11/ \2 +
13

The signs are defined (on D iii') in the words " Si maior,

signabis ilium hac nota + Si minor ilia — ".

The Wittenberg edition o/"l536 (in which signum additions

and signum subtractions occur), §§ 134—136.

§ 134. Two years later, in 1536, another edition by the

same printer appeared, in which a long continuation was
appended to the original Algorithmic, the whole being de-

scribed as the work of Peurbach. It is in this continuation

(in the explanation of the rule of false) that the words ' signum
additionis' and 'signum subtractions ' occur.

The title of the book is " Elementa arithmetices. algorith-

mvs de nvmeris integris, fractis, Regulis communibus, & de

Proporcionibus. Au tore Georgio Peurbachio. Omnia recens in

lucem edita fide & diligentia singulari. An. J\J.D. XXXVI.
* This statement is: "Hactenus Peurbachius, qui ant non absoluit ceptum

compendium, aufc pueris tantum conscripsit quos in hac prima numerorum tracta-

tione tantum exereere uoluit, bona enim fide quae in exemplar! Vienensi audita sunt
transcripsiinus. Adiecimus autem id quod erat reliquum, prodest eniui in scholia

integram liuius partis Methodum tradere, at adolescentes in liis numerorum
principija bene ezevcitati, ea faciline assequantui qua? it in altera Arithmetices
parte et in reliquis omnib. Matbematicia disciplinis traduntur. Spero autem ex
hac epitome aummS huiua pavtia facile cognosci atq ; intelligi posse, si usus
accesseiit, qui omniu Magistrorum pitecepta lunge Buperat".
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Cum prsefacione Philip. Melantli." The colophon (on G vii)

is "Tinpressum Vitebergje per losephum Klug. An. ]\i.D.

XXXVI."
The whole treatise runs on uninterruptedly, forming a

complete work, and the continuation is quite distinct from

that which was appended to the 1534 edition. After the words
'accipere potes', which end the original Algorismus Al,, there

is added another paragraph on square root in which a method of

extraction or verification is explained, followed by an example
(the first example which occurs in the work). Then comes
(on B vi) a chapter on cube root, of which no example is

given. On Bviii' there is a principal heading, ' Algorithmvs
de minvciis', which seems to apply to the rest of the book,

although the rules for the treatment of fractions end on Di.

Then under the heading " Qvasdam regvlas ad inveniendum
nuinerum ignotum per notos sibi proporcionatos subiungere"
there are two pages on proportions, giving the rules by which,

when two out of three numbers in continued proportion are

known, the third can be found, and by which, when three

numbers out of four in simple proportion are known, the

fourth can be found. Then on D ii, under the heading ' De
regvlis', the author begins with the paragraph " In Elementis

primis Arithmetical practical stetimus hucusque nunc ad res

scitu digniores animum applicabimus, quas nisi nacti fuerimus

inaniter diem transiuit omnia opera. Quid enim literas uidisse

proderit, si dictiones contexere nequeas? Quanti faeies in-

strumentu, si non eius calleas usuin? Adesto igitur aequo

animo & regulas accipe, ut pernoscas quid spei sit reliquum

post hac quod ex Enigmatibus afferam ". This introduction

is followed by two paragraphs, which are almost a repetition

of the rules just given for finding a third or fourth propor-

tional,* and the next paragraph explains that if a number is

the sum of several others, then any other number can be

expressed as a similar sum by means of a simple proportion.

f

§ 135. He then passes to the rule of false, of which the

heading (on D iii') is " Nvnc ad regvlam positionis falsse, quain

* On D i and 1) i' ' proportionalitas ' is 'continua' or 'discontinua', but in the

repetition on Diiand 1) ii' numbers are proportional 'continue' or ' incontinue '.

This seems to suggest that a new departure is made with ' De regvlis' on Dii.

The use of a letter to denote an unknown on I) ii' is noticeable : as an example of

finding a third number in continued proportion the author writes "in exemplo ties

sunt numeri4. 6. et A. ignotus quem tibi notum dari uelles, multiplier terminum
comunero bcz <>. in se fiunt 3G. quae diuide per 4. exeunt 9. Humerus scilicet A priua

ignotus". The rule is then given that if the extremes are known the mean is

found as the square root of their product.

t This is considered a separate rule, being introduced by the words " Aliam
Regulam quae prions tilia ceusetur tibi dabo ".
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Arabes Stahaim appellant, attentus sis nolo". In describing

the rule, in reference to the first position he writes " Qnod si

non dabit ueram solntionem, dabit turn aliqnem numerum uel

in inorera uera [solujcione uel maiorem en. Si minorein,

subtrahe euni a uera solutlone, & residuum uoeabitur error

diininutus. Si autem maiorem, ab eo subtrahe ueram soln-

tionem, & residuum appellabis errorem additum. Huiusniodi

•ergo errorem primae position i subscribe cum signo denotante

ipsum fuisse additum uel diminutum". A second position is

then to be taken, and he proceeds " Si autem non occurret

uera solutio, nota errorem ut prius, hunc errorem pone sub

sua positione cum signo additionis uel diininutionis ". He
then gives the rule tor deducing the true result from the

positions and errors; the errors are referred to as additi or

diminuti, but the signum is not mentioned.

Only one example is given. Two companions wish to buy
si horse, of which the price is 10 florins. The first will have

enough to buy it if the second gives him half of what he

possesses: the second will have money enough if the first gives

him -1 of what he possesses. Suppose the first has 3 fl, then,

the second must have 14 fl, and therefore with ^ of what the

first has he has 15 fl with which to buy the horse, and '"erit

error additus 5. quern scribe sub tribuscum signo additionis.
1 '

He then supposes that the first has 4 florins, and gives the

direction " ope rare sicut prius, tandem ueniet error additus 3.

& ^ hunc subscribe suae positioni cum additionis signo."

After this he gives various problems under the heading

(on D v) "Nvnc ad enigmata varia descendamus". The last

of these (on Ei'), which is similar to the example under the

rule of false which has just been described, is: three com-
panions wish to buy a horse, the price of which is 100 fl.

The first will have enough to buy it if the second gives him
-£ of what he has: the second will have enough if the third

gives him -£• of what he has: and the third will have enough
if the first gives him ^ of what he has. The problem is

solved by the rule of false exactly in the same way as the

previous question relating to the purchase of a horse. The
first position is 70 fl (for the money of the first) which gives

137^ fl for what the third will have to buy the horse with:

"errauit ergo positio prima in 37^ additis, scribe ergo 37^-

sub 70. scilicet positioe comuni prima cum signo additionis."

For the second position he takes 80 fl which gives 200 fl for

what the third will have for the purchase of the horse. " Vnde
constat positionem secundam evrasse in 100. additis, scribe ergo
100. sub 80. positione scilicet secunda cum signo additionis."

VOL. LI. H
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The book ends on Gii' with some examples of the different

kinds of proportions: then follows (G iii to Gvii) the ' De
proportionibvs ex dementis Evclidis, per Ioannem Vogelin',

which had already appeared in the 1534 edition, the colophon

being on G vii.

§ 136. If this continuation was really written by Peurbach

it would show that in the rule of false he used signs to indicate

whether the error was additus or diininutus, and that these

signs were called the signuin additionis and the signum

diminutions: but it seems uncertain whether this continuation

is correctly ascribed to Peurbach. The natural inference

from the two editions of 1534 and 1536 would be that in the

former year King printed Peurbach's original Algorithmus,

supposing that this was all he had written (in his own words,

transcribing the Vienna edition faithfully) and appended to it

a continuation by a contemporary writer so that the wholi)

might form an adequate introduction to arithmetic; but that

subsequently a manuscript of a more complete arithmetic

wholly due to Peurbach himself came to light and that this

manuscript 'edita fide & diligentia singular! ' formed the

Elementa Arithmetices of 1536.

A circumstance in favour of its genuineness is that it was

published in conjunction with Voegelin's Geometry*, and

that Voegelin was a distinguished professor at the University

of Vienna, where Peurbach had lectured: and it does not

seem likely that he would have allowed an arithmetic having

Peurbach's name to be attached to a work of his own unless

lie believed it to be authentic.

f

Comparison of the two Wintevburg editions Al, and Al
}, § 137.

§ 137. Before considering further the authenticity of the

portion of the arithmetic which was first published in 1536, it

is convenient to compare the different editions of the portion

* The two books were issued together, the joint title being " Elementa geome-

triae ex Evclide singulari prudentia collecta a Ioanne Vogelin professore Mathe-

inatico in Bchola Viennensi. arithmeticae practicse per Georgitim Peurbachinm
Mathematician. Cum praefacione Philippi Melanthunis". Melanchthon's preface

mimI a page of verse* occupy seven leaves, then the Geometry begins on B i, without

:i separate title-page, and ends on K rii with the colophon "Impresaum Viteberga

per losephum King. M.I). XXXVI." 1 hen comes the title-page of Pembachs
Elcmenttt Arithmetices on A i. The Arithmetic ends on Gii'. and is followed by
Voegelin's proportions from Euclid, the colophon being on Gvii. The account of

the Venetian reprint (§ 160) given in Rara Arithmecica (p. 68) shows that in that

edition bottl works were issued together in the same manner.

t A volume of manuscripts in the Vienna library, Codex Vindob. 5277, belonged

to Voegelin, most of the manuscripts and the index being iu bis hand writing

(Wappler, note to p. o of his I'rogramm referred to iu § 162).
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ending with 'accipere potes ' (in the chapter on square root),

the genuineness of which may be assumed.

In the first place it is worth while to notice some differences

between the two undated editions printed at Vienna by

"Winterburg, which have been denoted by Al, and Al
s (§§ 127,

128;. To the former the date 1500 has been assigned, and it

may be even earlier.

Besides the misprints in the former, referred to in § 127,

and some slight variations, the following differences occur:

In 1.18 of the chapter on addition, an 'in' is inserted in Al,

which does not appear in Al
(

, the words in Al, being 'aut isto

opere', and in Al
a
'aut I isto opere '„ In 1.7 of tlie chapter

on subtraction, Al, has ' scribe tibi ' and Al
s

' scribe ibi ' : and

in 1.8 Al
f
has ' qili min9

a rniori ', and Al
2

' qui mai* a mlori '.

3n 1.16 of the chapter on mediation and 1.4 of that ou

duplation a space has been left for the traction ^ in A I,, but

the £ has been inserted in Al
s

. Of these differences the ' in
'

is trifling, but 'minus a minori' is clearly a slip which needs

correction, and of course the fraction ^ (left out in Al, pre-?

suinably for want of type) should be inserted.

Variations in the different editions, §§ 138—140.

§ 138. Passing now to all the editions which I have been

able to examine, viz. Al, (1500?), Al, (uncertain date), 1503

(Leipzig), 1513 (Nuremberg), 1515 (Vienna, Tannstetter's

edition), 1534 (Wittenberg), 1536 (Wittenberg), it will be

seen that they fall into groups in regard to certain verbal

variations which occur.

These variations are as follows; the editions printed at

Vienna by Winterburg being denoted by Al, and Al
a
as before,

and the other editions by their dates.

Jn ' Ue additione', ' auteni isto opere' occurs in Al,, 1513,

1515, 1534, and ' autem in isto opere' in Al
a , 1503, 1536.

In ' De subtractione ', 'scribe tibi' occurs in Al„ 1513,

1515, 1534, 'scribe ibi' in Al„ 1503, and 'ibi scribe' in 1536:
* quoniam minus a minori subtrahi non consueuit' occurs in

Al,, 1513, 1515, 1534, while minus is replaced by maius in

Al
a

, 1503, 1536: also ' obseruare fiat oblatum ciffre' occurs in

Al,, Al,, 1513, 1515, but it is 'obseruare fiat ablatio' in 1534,
and ' considerare fiat ablatio' in 1536.

Jn ' De Mediatione' the sentence ' Et niedietatem sub tali

digito aut cifra inferius scripto ' occurs in Al,, Al,, 1513, 1515
1534, but 'scripto' is replaced by 'scribes' iu 1503, 1536.
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Tn ' I)e Mediatione' and in ' De Duplatione' the \ is

omitted in Al,, a space, however, being left tor it; and it is

omitted without any space being lett in 1513, 1515, 1534.

The \ is inserted in Al„ 1503, 1538.

The omission of'

\ in mediation and duplalion is serious, as

without it the sentences are unintelligible. Jn the former the

learner is directed, if the number to be halved ends with an

uneven number, ' post finem numeri aliquo spacio interiecto

scribere; ut sic \ talis vnitatis medietatem ', and in the

latter the rule is ' Si tatnen haberes extra ordinem \ pro

tali duplando adderes primis prius in dextera parte vnitatem \

§ 139. The preceding comparison shows that Al,, Al
2,

1513, 1515, 1534 are substantially the same and that they

have presumably been all derived from Al, or some equi-

valent text.

The principal differences are that. ^ is inserted in Al
2

, and

that 'oblatntn ciffre' becomes 'ablatio' in 1534; but obvious

emendations, such as mains for minus or scribes for scripto,

have not been made.
Among the editions in which there has been no serious

change Al
2

is the best. The absence of '£' in mediation

and duplation in so many editions, including Tannstetter's,

shows how little care was taken in the re-issues.

The Leipzig edition of 1503 seems to have been derived

from Al, (i.e. not from an independent source), but to have

been enlarged and improved by a competent editor: so that

it is not wholly due to Peurbach. It is noticeable that some
of the changes made in this edition occur also in that of 1536.

It was mentioned in § 76 that Lacher's Algorithmus Mer-
catorum up to the end of ' De Divisione ' was a reprint of

Peurbach's Algorithmus, and, as one would expect, it was

the Leipzig edition of 1503 which hecopied. All thedivergencies

from Al, which occur in the latter are reproduced in Lacher's

Algorithmus.

§ 140. Coming now to the edition of 1536 there are

numerous differences of wording from the Vienna editions,

many of them of slight importance, but indicating either that

tins earlier portion has been revised or that the text has been

derived from another source. Thus in the first chapter (on

numeration) 'significat figuram primariam ipsius impositionis.

In secundo vocatur decies taiitum ' becomes, in the 1536

edition. ' significat secundum primariam ipsius impositionem.

In secundo uero decies tantuui '. In the first sentence of
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' De jfediatione ' viz.
{ Numerum quencunque mediare', the

last word is replaced by ' dimidiate '. The first sentenee of

'De Multiplicatione', viz. 'Numerum quencunque multiplicare',

is amplified by the insertion of 'per quencunque' before

multiplicare, and this is followed by a new sentence 'Multi-

plicare non est aliud', etc. In ' De Divisions' the sentence
' In his autera omnibus speciebus . .

.' becomes ' Prseterea in

his omnibus speciebus. .
.' In ' De progression e ' in ' iunge

etiam primum ultimo' the word 'locum' is introduced after

'primum'; and three lines before 'accipere potes', which

ends the Algorismus in the earlier editions, in 'si tale

auperfluerit dempseris', the word superfluerit is replaced by
superfiuuin. There are also other such changes.

References to Peurhaclis Algorithmic by Drobisch, Gerhardt,

Treutkin, Unger, Tropfke. and Cantor, §§ 141— 146.

\ 141. Drobisch* seems to have been the first to direct

attention to Peurbacb's mention of the signs of addition and

"subtraction. After pointing out that + and — were first used

by Widman, but in such a way as to suggest that they were

already known in Germany, he states that he lias failed to

find them in Peurbach or Kegiomontanus: but in connection

with the former he adds the note " In Peurbachii algorismo,

ubi regula falsi exponitur, de signis additionis et diminutionis

sermo quidem est, sed lectoris libero arbitrio relictum videtur,

commoda signa sibi eligere."

It is evident therefore that Drobisch must be referring to

the 1536 edition or a reprint, or, at all events, an edition

having the same text.

§ 142. Gerhardt, on pp. 9—11 of his Geschichte der Matlie-

matilc in Deutschland (1877), gives an account of Peurbacb's

Algorismus (ending with square root), but he makes no refer-

ence to the continuation, or to Peurbacb's allusion to the

signsf.

He quotes Grammateus's statement that Peurbacb's Algo-

* De . . . Widmanni . . . compendia (1810), p. 20.

t He describes the Algorismus in its original form, but states that later it was
often enlarged by < Kamplea and additional notes. The example by which he
illustrates Peurbacb's method of division (viz. the division of 51)078 by 798) is the

one given in the Leipzig edition of 1503. In a note he gives the three titles

' Introductorium in Arithmeticain ',
' Algorithm us de in tegris', 'Opusculnm Magiatri

Georgii Peurbachii', referring to Asohbach (see § M'J), and he also mentions

Tunnstettei'a edition of 1515.

H2
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fismus was written for the young students of the high school

at Vienna*.

§ 143. Treutlein, writing in 1879")", adopts Drobiseh's

opinion that -f and — were already in nse in Germany by
Widman's time, hut, differing from him, considers that they
were the signs referred to hy Peurhaeh. His words are "Ich
meinerseits rinde eine Bestiitignng hiefiir, Drobiseh's Ansicht
entgegen, audi hei Peurhaeh (+14G1) : wo dieser die liegula

Falsi erkliirt, verlangt er, dass man eine gewisse Zahl ' cum
signo denotante ipsian (numerum) fuisse addition uel dimi-

M«<«m', oder an einer andern Stelle, dass man sie anschreibeu

solle ' cum sicjno additionis uel diminutiouis\ wobei freilich

Peurhaeh selhst die Zeichen nicht gebraucht ; mir scheint ea

einein Zwauge gleichzukommen, wenn man liierin den
Gculanken an den Gebraueh der Zeichen -f- und — nicht

annehmen wollte".* It would seem that Treutlein had not

himself seen Peurbaeh's Algorismus.§

§ 144. Unger in his Die Methodik\\ (1888) makes no
reference to the mention of the signs by Peurhaeh. On
p. 35 he gives the title of the edition of 1536 and describes

its contents. At the end he refers to an earlier edition in

the words " Wildermuth nennt einen aus sieben Quartbliittern

bestehenden Algorithmus Peurbachs, welcher 15U5 gedruckt
ist ". On p. 25 he had said that from Grammateus we learn

that the Algorithmus of Peurhaeh "gemacht sei fur die

JStudenten der liohen schul zu Wien", and he remarks that

it only contains the amount of knowledge that children of ten

* This sentence, which has already been quoted in §46 (p. 85), is " Vnd diese

regelbeschreybt vnsMaisterGeorgius von burbachjn dem lateinischen algoritiimo,

gemacht fur die jungen studenten der lioen schiiel zu Wien ". Grammateus's own
book (no. 5° of § 12, p. 30) was "gemacht auff der loblicbe hohe schul zu wienn".

t ZeUfchr.fur Math. u. Vhys., vol. x.\h\, Bupp., p. 29.

X He was confirmed in bis opinion by a manuscript printed by Gerliardt, in

which + and — occur. (See the last note to § 13, p. '.>). This manuscript has the
heading llegulc Cose vel Ahjobve, and is the first manuscript in the Vienna Codex
5277. An extract from it was published in the ifonatsberichte of the Berlin
Academy for IS70 (pp. 143-1-17) by Gerliardt, who assigned it to the middle
of the 16th century. It has since been shown that the whole Codex belongs to

the Kith century (Wappler, p. 3, note, of his I'rogramm, referred to in §162;
Cantor, Vovlesungen, vol. ii., p. 240; Curtze, Centmlblutt fur Bibliothekswesen,
Jahrgang 16, p. 290). Curtze {I.e.) found in the Munich Codex 1969] another
manuscript of the Regule Cose vel Algobre bearing the date 1510, so that this

tientise certainly is not later than the beginning of the Kith century.
'1 he Vienna Codex 6277 has been already mentioned in the second note to § 130

(p. 98) as having belonged to Voegelin.

§ Be refers to the Algorismus in vol. xxii. of the Zeitschilft (1S77), supp.,

p. 11. hut quotes Wildermuth with respect to its contents.

||

'• Diemethodikderpraktischen aiithwetikin historischei' cntwickelung . . .

"

(Leipzig, 1»>S).
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years of age now possess.* This is true of the Vienna and
other early editions, but. not of that of 1536, which is the

only one described by linger.

§ 145. Tropfke, on p. 132 of vol. i. of his Geschickte der

elementar-mathematik, refers to Treutlein's account of the

nse of the words signum additionis, etc., by Peurbach, but
expresses his doubts as to whether the words quoted by
Treutleiii were originally written by Peurbach, as they may
have been the additions of a later editor. He mentions that

they are wanting in the various editions which he has seen,

and that he has never met with them.f His words are
" Aber es ist ausserordentlich zweifelhaft, ob das Original-

bemerkimgen Peurbach's sind. Man kann annehmen, dass
liier spatere Zusiitze vorliegen, die ein Ilerausgeber des
Peurbaeh'sehen Buches sich erlaubt hat; einmal fehleu

namlich in verschiedenen Aufla^en diese Bemerkungen
ganzlieh, dann ist die gehrauchte Redewendung die beliebte

Ausdrucksweise in verschiedenen ItechenbuVhern des begin-
nenden sechzehnten Jahrhunderts, als die Zeichen + and —
liingst benutzt wurden ".

With reference to the last sentence, it may be remarked
that we should certainly not expect the words signum
additionis or signum diminutionis to be used for + and —
in the ride of false unless the signs were well known (for the

idea to be conveyed is that of more or less, and not addition

or diminution). But their use in the 1536 edition of Peur-
bach is justified by the preliminary steps: first we have an
' error additus ' or 'error diminutus' according as the result

exceeds or falls short of the true value. Then comes a
'signum' to denote whether the error was additus or dimi-

nutus, and then a signum additionis and signum diminutionis.

§ 146. Cantor's account of Peurbach's Algorismus is given
on pp. 180, 181 of vol. ii. of his Vorlesungen. He says it was

* "VonGrammatenserfahren wir, das? der Algorithmic W. Georgii Peurbachii,
der etwa dasjenige arithmetische Mass von Wissen enthalt, welches gegenwartig
zehnjahrige Kinder besitzen,

'
gemacht sei fur die Btndenten der hohen schul zu

Wien'". Here, and also on p. 35, Unger leaves out the word 'jungen', which
sliould be inserted before studenten. Qrammateus's statement could only refer to
the Algorismus in its early form, as the book in which it occurs was published in
1518.

f " Verfasser hat verschiedene Ausgaben des Peurbach'schen Rechenbuches
eingesehen, obne die von Tieutlein angefuhrten Bemerkungen zu linden." Thus
Tropfke had not seen the edition of load, and therefore did not know the extent
of the additional matter in this edition, viz. 74$ pp. out of 95. On p. '_>,S he quotes
Unger's statement that Peurbach's Algorismus contains only what children of ten
now know, which was true of the editions that Tropfke had seen.
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first published at tlie end of tlie fifteenth century, perhaps in

1492, under the title " Opus algorismi jocundissimum " and
often reprinted with this title, or " Institutiones in arith-

metieain ", or merely as " Opusculum Magiatri Georgii

Peurbachii ". He states that like the Algorismus of Sacro-

boseo it relates only to integers, but that an edition

superintended by Melanchthon and Voegelin, and printed

at Wittenberg in 1536, contains an algorithmus de minuciis

and an algorithinus de proportionibus ascribed to Peurbach,

of which the first seems to be genuine, as it occurs in a

Munich manuscript of the fifteenth century.* He then mentions

that Peurbach seems to have fallen short of his predecessor

JSaerobosco, in omitting cube root, although from the different

editions which were all published at least 30 years after

Peurbach's death a positive conclusion cannot be reached

(wiewohl aus den unter einander verschiedenen Drucken, die

ja alle mindestens 30 Jahre naeh Peurbach's Tode erfolgten,

ein sicherer Schluss nicht gezogen werden kann), and he

refers in a note to Gerhardt's description of the Algorismus

and Giinther's description of an edition of 1503, in which

cube root, the rule of three, etc. occur. The latter is pre-

sumably the Leipzig edition described in § 129.

Cantor's statement that the Algorithmic de minuciis in the

1536 edition occurs also in a Munich manuscript of the fifteenth

century is important.

Editions of Peurbacli s Algorithmic mentioned by bibliographers

and others, §§ 147-150.

§147. I now mention editions of the Algorithmus which

have been recorded or described by bibliographers and others.

J n his Versuch\ Khautz devotes most of chapter ii. (pp.

33—57) to Peurbach, giving a description of his works on

pp. 45—57. Tlie paragraph describing his writings on arith-

metic begins "VI. Jntroductoriuni in Arithmeticam. ApfalirerJ

Behreibt : es sey bier im Jahre 1511, durch Hieronymus Binder,

oder, wie sich dieser . . . moclite genennet haben, Vietor,

* " allein eine durcli Melanchthon und Voegelin besorgte, in Wittenberg

gedruckte Ansgabe von 153(5 enthalt einen deni Penrbacli zngeschriebenen algo-

rithmua de minuciis und einen algorithmus de proportionibus, von welchen der

ersteie echt zu sein scheint, da er audi in einer Miinchener Handschrift des XV.
Jahrhunderta vorkommr."

t " Versnch einer Geschichte der Oesterreichischen Gelehrten . . . von Franz
Coi)9taiitin Klorian von Khautz" (Frankfort and Leipzig, 1755).

I 1 have not been able to see Apfaltrer's work In Adelung's " Fortsetzung . .

.

zu . . . Jbcher's Allgemeinem Gelehrten-Lexieo" (vol. i., Leipzig, 1781) tlie title is

given as "Scriptoium untiquiss. ac celeberr. Vnivei^it. Vicnnensis Para I. Wien,
1740".
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herausgegangen* Naehgehends ist diess Rechenbiichlein iti

gothischem Drucke zu Niirnberg in 4 ans Taglicht getreten :
".

The title and the colophon of the work are then given,

and they correspond to the Nuremberg edition of the same
date described in § 130. Finally the full title of the Witten-

berg edition of 1536 is given. Mention is also made of the

preface by Johann Marius PJietus ' an die Kunstbeflissenen ' in

the former, and of the preface of Melanchthon and dedication

to Justus Jonas in the latter.

It might be inferred from the first sentence that " Intro-

ductorium in Arithmeticam" was the title of the book printed

at Vienna in 1511 by Vietor; but this is not so, for the title

of the work, which i« given by Denis (§ 148), is the same
as that of the Nuremberg edition of 1513.

On p. 56 Khautz says that besides the books which he has

mentioned under 'VI.' Apfaltrer attributed to Peurbach still

another Arithmetic, viz. " Algorismus. Editus Viennae Austr.

typis Io. Winlerburgii, sine anno, habetur in Biblioth. Acade-
mica.", but he thinks that Apfaltrer is in error, and that the

book is not Peurbach's. He proceeds " Denn, was war es

noting, dass sich Peurbach im Abe der Mathematik verweilen,

und zwo Anleitungen dazu verfertigen sollte?" He thinks

it likely that the book was written by an unknown author,

and gives an example of a wrong attribution in the case of

another book. Apfaltrer, however, was correct, and the book
referred to is one of the Winterburg editions.

Thus Khautz mentions four editions: a Winterburg Algo-

rithmus, and those of 1511 (Vienna), 1513 (Nuremberg), 1536

(Wittenberg).

§ 148. Denis, in his Wie»s Buchdruckergeschiclit,^ gives

the titles of four editions of Peurbach's Algorithmus printed

at Vienna, two by Vietor (1511, 1515), one by S'mgreuier

(1520), and one by Winterburg (without date).

On p. 59 he describes the book of 1511 referred to by

Apfaltrer and Khautz. The title is the same as that of the

Nuremberg edition of 1513 (except for the spelling of Arith-

* The twenty headings under which Khautz describes Peurbach's writings are

taken from a list in "Tabulae Eclypsiu Magistri Georgii Peurbachij ", which was
published by Tannsteiter at Vienna in 1514. In the introductory matter (on aa3')

there is a brief life of Peurbach, followed by a list of his writings, which, it is

stated, was made by Stiborius (the instructor of Tannstetter). The sixth title in

this list is " Introductorium in Arithmeticam ", which was adopted as a heading,

as also were the other titles, by Khautz. But I do not think that Stiborius meant
it for the title of a book, or that it was so understood by Khautz.

t " Wiens Buchdruckergeschicht bis M.D. LX. Von Michael Denis" (Vienna,

1782).
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meticam), and tlie coloplion is " Impressum Vienne Pannoniaa

ah Hieronymo Pliiloualle.* Anno. M.D.Xl.decima dieMartii."

lie refers to tlie preface of Job. Marius Rhetus, quoting

the concluding words, and, after describing the Algorithmic,

proceeds " Nicht voin Peuerbach sind die angehangte goldene,

die Gesellschaftregel unci einige rathselhafteu Aufgaben, davon
die letzte dein Vadian zugeschrieben ist ".

It would therefore seem that the Nuremberg edition of

1513 was an exact reprint of the Vienna edition of 1511.

On p. 128 he describes another edition of the Algorithmic

printed by Vietor in 1515. The title is "Algorithmic Georgii

Peurbachii Mathematics omnia acutissimi no ta utilis quam
necessarius." : this edition also contains the same additions

(rule of three, etc.). The colophon is " Per Hieronymu Vietore

Vienna} Austria? 19 die Oetobris. Anno 1515."f
He also (p. 215) describes another edition, with the same

title, printed by Singrenier in 1520, and having the colophon
" Per Joannem ISingrenium, Vienna} Austria?. Mense lYeb.

1520."

Among the undated books (on p. 313) is the Algorismus,

described in §127 and denoted by Al,. It is identifiable by

the misprints ' Wieunensis' and ' inquisitorte '. Denis's com-

ment is " Vielleicht die ungeschickteste Aufschrift unter alien

unsern Producten ". He rinds it difficult to assign a date to

it, but adds " doch wollte ich sie lieber in Winterburgers

friiliere Zeit setzen.J

§ 149. Aschhach in his Ge.schiehte der Wiener Universitat§

(pp.486 and 487) mentions various editions of Peurbach's Arith-

metic, but all his information seems to have been derived from

Apfaltrer,Khautz, Denis, and Main, and not from an inspection of

the works themselves. Thus he says that Peurbach's mathe-

* On p. vii Denis gives an account of Hieronymus Vietor, tlie printer. He
used tlie names Philovallis, Doliarius, Vietoris, and also simply Hieronymus.

Probably bis German name was Binder. He first printed on his own account at

Y ienna in 1510.

f Denis notes that this bonk shows that, Khautz was wrong in doubting whether

Peurbach ever published an Algorismus, and that furtlier confirmation of the publi-

a Horded by the Wittenberg Elementa Arithmetical of 1536 (in which

' algorithmic de numeris integris' is part of the title), and by the editions of 1520

and i he undated edition by Winterburg, both of which he describes. He adds that

Hi.- Algorithmic was itted by Tannstetter in his list in the 'Tabulse Eclypsiuui'

because he regarded it as included under ' Introductorium in Arithmeticam '.

J This title is *13600 in Bain {Rep. Bib., vol ii.. pt. ii.). Hain also gives

(•13598 and *15999) the titles of two other editions without place, or date, or name
of printer. The firnt of these contains three misprints, 'wieunensis', ' singulars',

iuquisitoris ' (u for n in each case), but the second title is correct. They have

Algorismus' alone on the firal leaf, as in Al,.

§ " Geschichte der Wienei tlniversitat im eraten jahrhunderte ihrea bestehens

. . . von Joseph Asohbaeh " (Vienna, 1SG5).



+ and — and on the early German arithmeticians. 107

mntical works are his ' Algorismus oder Arithmetik ' and his

'Einleitung in die Arithmetik'.

Of the Algorithmic lie mentions the Vienna editions of

1515, 1520, and the undated editions: and of the ' Introduc-

torium oder Institutiones in Arithmetieam ' he mentions the

editions of Vienna, 1511, Nuremberg, 1513, and Wittenberg,

1538, " durch Pliil. Melanehthon herausgegeben, der das

Bueh unrichtiger Weise dein Justus Jonas zusehreibt."*

As we have seen, the Algorithmus and the Institutiones

are the same work, and probably there was no edition with

the word Introductoiiutn in t he title: but the edition of 1536,

though including the Algorithmic, is a very much larger work.

§ 150. In Rara Arithmetical, Eugene Smith (p. 53) describes

the Wittenberg edition of 1531, and also an edition published

at Venice in 1539 which must be a reprint of the Wittenberg-

edition of 1536. The title is the same as that of the 1536

edition, but the colophon is " Venetijs loan. Anto. de Nicolinis

de Snbio. Sumptu uero D. Melchioris JSeffae. Anno Domini
M D XXXV1I1I. Mense Ianuario."

As in the case of the 1536 edition, the Arithmetic was
issued with Voegelin's Geometry, the joint title-page given

in tiara Arithmetical being the same (except for changes in a

few letters) as in the 1536 edition. .No reference is made to

the difference between the Arithmetics of 1534 and 1539, which

are treated as different editions of the same work.

Concluding remarks, § 151.

§ 151. Until further information is forthcoming with respect

to the origin of the edition of 1536, I do not think that any
certain conclusion can be reached. It might be supposed that

Tannstetter would have published in his collection of works in

1515 the more complete Arithmetic of Peurbaeh had he known
of its existence : on the other hand, Voegelin seems to have
been concerned in the actual publication. Without further

knowledge of the source from which the book of 1536 was
derived, it seems beat to regard it as not affording any trust-

worthy evidence of the use of signs of addition and subtraction

in Peurbach's time.

* Asclibach is merely following ApfaHrer and Kliautz, and bo I think that 1538
is a misprint for 1536. I do not understand ' anrichliger Weise', unless Aschbach
understood Khautz to say that Melanehthon attributed the book to Justus Jonas:
but zusehreibt here means dedieittes.
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Part III.

The German and Latin Algebras in Codex C 80 of the

Dresden Library, § 152.

§ 152. I pass now to the consideration of the manuscript

sources of information which VVidman had at his command
when writing his Rechenung (1489), and from which he probably

derived his use of the signs -f- and —

.

In 1887 Wappler printed, as an ' Abhandlung zu dem
Programm des Gymnasiums zu Zwickau^'* a portion of a

German Algebra and the whole of a Latin Algebra which are

contained in the volume Codex C 80 in the Royal Library at

Dresden. This volume, Wappler states, was originally in

Widman's possession.!

The German Algebra in C 80, §§ 153-154.

§153. In the German Algebra,} the date of which is 1481,

the cossic quantities are zall, dingk,§ zensi, chubi, wmzell von

der wurzell, and there are signs for the first three, the fourth

being denoted by chu, and the fifth by r|| von r. The words

und and minner are used to connect quantities by addition

and subtraction. Thus to multiply 40 minner 53 by 20 minner

33, he says that 40 by 20 makes 8j, that 33 by 40 makes 120

minner, and that 53 by 20 makes 100 minner, so that al-

together it makes 85 and 153 minner 220.1"

§ 154. This example of multiplication is immediately

followed by another, in which — is used in place of minner.
" Aber 33 - 26 stund 60 vnd 53 so sprich 33 stund 60 macht

180 Nu sprich 33 stund 53 macht 153 Darnach mache 20

stund 60 macht 12$ - vnd mach 20 stund 53 100 - als 180

* "Zur Geschiclite der deutschen Algebra im 15. Jahrhundert. Abhandlung zu

dem Programm des Gymnasiums zu Zwickau von Oberlehrer Ur. Wappler"
(Zwickau, 1887).

t Protjramm, p. 'J. "Als den friiliesten Besitzer des Dresdner Codex C 80

liabe icli Johann Widman von Eger ermittelt."

J Programm, pp. .'i-5. When Wappler published his Programm in 1887 he

had not deciphered the inscription containing the date. This he gave sub-

sequently in the ZeilechriftfUr Math. u. Phys., vol. xliv., supp. vol.. p. 639 (1899).

As this periodical will be frequently referred to in this Part it will be quoted simply

as Zeitschvift

§ The s"it<ns for zall and dingk (which seem to be variations of the letter </)

I replace by 3 and 6, to which they have some resemblance. The sign for

zensi is J.

||
This sign, which I replace by a simple r, resembles r with a loop or flourish

attached.

1l
I he multiplication of 53 by 33. both of which follow 'minner', ia not

explicitly given, but 153 appears as their product in the final result.
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vnd 153 minner 12$ vnd miner 100". Then, taking 100
from 180, there remains ' 80 vnd 15$ miner 12$'.

In these examples minner and — are placed after the

quantity to which they refer when this quantity stands alone

(i.e. so that there is no other quantity from which it can be
subtracted). In the second example the sign - is used in the

statement of the question, and in the working, but not in the

final result.

Although Wappler gives only a portion of this German
Algebra, I think we may infer that this is the only place where
the sign — occurs.

The Latin Algebra in C 80, §§ 155-156.

§ 155. On pp. 11-30 of his Programm, Wappler prints the

whole of the Latin Algebra. There is nothing in the manu-
script to show its date, but evidence will be given (§ 158) which
proves that it cannot be later than I486. It consists of the

24 rules of algebra and of a great number of examples and
problems illustrating their application. The names are Hu-
merus, cossa and radix, census, cubus; but the unknown is

usually referred to as res. The cossic symbols resemble those

that afterwards became general.*

The signs + and — are freely used throughout. The sign

+ first occurs on p. 13 in a list of 19 rules, the eighth of

which is " Ice + 2$ equantur 15^. tp est 3 ". It occurs also iu

nine more rules in this list, and in three places in the text on
the same page. The sign — also occurs for the first time on
this page in the expression "radix aggregati — medietate ip

est valor rei ". In the following seventeen pages the signs

+ and — are continually used just as at present. They occur

not only in simple expressions such as \\p + 2^<p (p. 18),

63i/,+ 1$ (p. 22), 6$ + 60- 12?// (p. 26), but in fractions such as

lOf-lj 480^ + 4800

120-24^ (P>25) ' 128$ + 256^ (P '
21) '

In one question (p. 22) the sign - is used where we should

have expected the word rather than the sign. In this question

a person buys a certain number of ells of cloth for 60 florins,

and if there had been three more for the 60 florins, an ell

would have cost 1 florin less (tunc 1 vlna 1 fl — comparetui).

Further on, in the solution, the sentence occurs, 'Nunc id est

* Niimei'us is denoted by o with a sloping line through it, radix by a sign
resembling r with a loop attached, census by }, cubus by a sign resembling c with
a loop attached. For convenience of printing I replace the signs for Humerus and
radix by (p and >//, and that for cubus by ce.
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60 , . ,, ... . . 60 , . ,

— 1 quam —- , i.e. JNow it is less by 1 than —- : and when
1

li/,
' J

It/,
'

it lias been shown that in the first case 12 ells were bought,

and in the second 15, the solution concludes ' lam notas, quod
1 fl — vlna comparetur ', i.e., that an ell is bought for 1 florin

less.

It may be noted that in this Latin Algebra a point is used

as a square root sign, e.g., .11 denotes \J\\.

The use of the signs + and — in the Latin Algebra will be

further considered in §$ 166-167, 175-178.

§ 156. Thus Widman was in possession of two manuscripts,

in one of which (the German Algebra) the sign — occurs, but

apparently only in one paragraph, while in the other (the

Latin Algebra) both — and + not only occur, but are used

systematically.

Neither the German Algebra nor the Latin Algebra is in

Widman's handwriting, but on the margin of the Latin Algebra

at the side, and above and below the text, there are a number
of problems and solutions which are in his writing. Four of

these were printed by Wappler in his Programm (pp. 5—7),

and thirty-eight more in the supplementary volume* to vol.

xliv. of the Zeitschriji (pp. 539-554). In twenty-five of these

solutions the signs + or — or both are used. Wappler also

prints (p. 540) Widman's translation into Latin of a problem

in the German Algebra in which he uses + and —

.

WiJmcuCs University lectures, §§ 157—159.

§ 157. Notices announcing two courses of lectures on
arithmetic by Widman at Leipzig occur in his own hand-

* This volume forms also the 9ih volume of the Abhandlurigen zur Geschichte

der Mathematik. Wappler states thai, at hist he was of opinion that only some of

the problems added to the Latin Algebra were in Widman's writing, hut afterwards
lie concluded that they all were written by Widman, though at different times

(p. 541).

The volumes of the Ablnrnd/uiii/en originated (and were continued as far as the
10th volume) as supplements to the ZeiUchrift. As references are sometimes
made bo the Abhandlungen as well as to the Zeitschvifl the following table con-
necting the volumes of the Abhandlungen with those of the Ze.itacheft will be
found useful :

Abhandlungtn, vol. 1, 2, 3, 4, 6, 6, 7, 8, 9, 10.

ZeiUchrift, vol. 22, 24, 26, 27, 34, 37, 40, 42, 44, 45.

This table is derived from the "General register zu Bond 1—60 der ZeiUcln-ift . .."

(Leipzig, 1905). After the 10th volume the Abhandlungen have double titles, hut
there seems to be nothing to show that the earlier volumes were also published
apart from the Zeitschvifl. The references in this paper will always be to

the ZeiUchrift, as being the more accessible and complete of the two periodicals;
but confusion cannot be entirely avoided, as the supplements which have the
Abhandlungtn title-page may have been treated as separate publications and nut
bound up with the ZeiUchrift.
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writing on tlie fly-leaf of the volume C80; and a notice of a

course of lectures on algebra, also in his own writing, appears
on the back of the leaf preceding the Latin Algebra. This
last notice is very interesting, if only because it expresses

Widman's great appreciation of the merits of algebra. It is

addressed to students (Adolescentes Ingenui), and after referring

to the common and rudimentary parts of arithmetic which
have been most amply treated ' in our previous editions

'

(prioribus nostris editionibus), and which afford an easy method
of calculation for general use, he proceeds "Yet if in human
affairs anything more difficult or intricate should arise, it must
be treated not by these, but by some higher, doctrines of

numeration which Algobre, of most excellent and almost divine

genius, has given to us in a few Aporismata (to use his own
word), an art truly admirable and foremost of all the inventions

ot mortals, on account of its singular and concealed methods, and
all the more so because, whether they have presented themselves
with respect to numbers or matters connected with number,
difficult and almost inexplicable problems, impossible tor one
ignorant of this art, can easily be investigated by the rules of

this art, and since this matter conduces in the highest degree
to the common utility of all, therefore to-day at the second
hour after the discourse and the celebration of the bachelors'

disputation Jo. W. De. Eg. will give exercises on the Apo-
rismata and rules of Algebra at an hour and time to be agreed
upon by the auditors".*

§ 158. We know that these lectures were actually delivered

at Leipzig in the summer of 1486, for the students' notes

(Kollegienlief't) derived from them are preserved in Codex
Lipsiensis 1470. These notes, which are entitled ' De regu-

* ''Si quid tamen in humanis negocijs ardius atque magis intricacius euenerifc

non ill is sed altioribua quibusdam numerandi racionibus pertractandum erit qnas
pveclariasimi quondam ac prope diuini ingenij Algobre paucis admodiini Aporis-
maiibiis vt suo vocabulo vtar nobis tradidit artem sane admirandam ao inter cunctas
mortalium inventiones precipuam turn propter singulares absoonditOBque calcu-
landi modos. turn eo maxiine quod sine de nnmeris sine de quibusvis rebus alijs

ad numerum applicatis Enigmata diflBcillima ac peue inextricabilia apudque huius
artis inacium impossibilia incident Artis huius Liegulis facile investigari possint
Que res cum ad communera omnium utilitatem summopere conducere videbatur
Quare liodie liora secunda post, eermonem atque Baccelaureorum celebrata dis-

putatione Magister Jo. W. ])e. Eg. Aporismata et Kegulas Algobre resumptions
pro bora atque loo. conuenienti cum audeturis concordabit etc." (Wappler's
Programm, p. 10). Wappler mentions that the same notice in a shortened form
appears also on the fly-leaf of C 80. This notice Wappler subsequently printed
in Ztitschrift, vol . xxxiv , BUpp., p. !<i7. It differs only in a few words, and is

Blightly shortened at the end. It will be noticed that Widman regarded Algobre
as a person and Aporisnui as his word. The word A poriama is used in the Latin
Algebra in <J SO. and seems to mean a method of solution. 1 have not met with
it in the other manuscripts or books that are referred to in this paper.
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larum algebre conditione '*, occupy pp. 479-493' of the

volume, and at the end is the inscription " Hec Liptziensi in

studio inform ata sunt a Magistro Johanne de Egra anno salutis

millesimo 486 in estate in habitacione sua burse Drawpitz pro

flduobus, qui faciunt 42 gl argenteos". They were discovered

by Curtze,j who found that they were identical with the Latin

Algebra of (
' 80 published by Wappler in his Programm. He

also states that in the college notes the signs + and — occur

"in their present signification as in Widman's printed arith-

metic". All this was confirmed by Wappler,! vv ' 10 considers

that it is therefore proved that the Latin Algebra in C80 was

the foundation of Widman's lectures on algebra.

§ 159. Widraan was inscribed a member of the University

of Leipzig in 1480: he became Bachelor of Arts in 1482, and

Master of Arts in December, 1485, or January, 1486§, and

we have seen that he gave lectures on algebra in the latter

year. Three years later he published his Reckenung (1489).

Wimpina states that in 1498 lie was living at his native place

Eger, being about 31 years of age and continually doing new
work

||

(Claret adliuc apud Egrenses annos natus uno forte

supra triginta, continue nova cudens. A.D. 1498. sub Maxi-

mitiano Ronianorum liege). If Widman was about 31 in

* The Latin Algebra in C 80 begins 'Pro regularum algabre cognicione est

primo notandum.'

f "Eine Studienreise." [Centralblatt fur Bibliothefcswesen, Jahrgang 16, 1899,

p. 2»9). Curtze in a note on p. 305 points out that 42 grosclien was an enormous fee

for the time, and quotes Giinther with respect to other fees of the period, which

vary from "2 grosohen to 8 groschen for courses of lectures on Euclid, arithmetic,

theory of the planets, etc. These lectures of Widman's are believed by Curtze

to be the first public lectures on algebra that were given in a German university.

I Ztkscfiri/t, vol.xlv , Hist.-litt. Abt.,pp.7—9. Wappler mentions that pp.504—
504' of Lipsiensis 1470 also contain a portion of the Latin Algebra of C 80. He
also found on p. 432 of this manuscript the following lecture announcement by

Widman: "Concordia facta auditorum in 21 regulis algabre. et en, que pre-

suppouuntur, puta, algorithmum in miiiucijs, in proporcionibus algorithmum, in

additis et diminuus algorithmum, in Burdis algorithmum, in applicatis, ceteroa

denique illis tinitis algorithmos, vt in datis, de duplici differentia, in probis, non
oculLabit Magister Johannes de Egra, eras circa horam sextain et cetera post

domici secunda feria". All these algorithmi are contained both in Lipsiensis 1470

and in Dresden G80, so that Wappler concludes that Widman lectured on all

these subjects as well as on the 2 4 rules of algebra.

L'he quotation in the text ' Hec Liptziensi... argenteos' differs slightly as given

by Ourtze and w applet-
. J have followed the latter.

§ Drobisch, De...Widmanni...compendio, p 17. Boncompagni states (Bullettino,

vol. ix., p. 208j that Widman was admitted to the degree Of Bachelor of Medicine

in December 1485 and thai of Master of Arts in January, I486, his authority being

i his passage in Urobisch ; but 1 think it is clear that the words' Medic. Baca' ill

the passage do not refer to Widman.
||

'Coiiradi Wiinpinse... scriptorum insignium...centuria...luci publicae tradita

a.. Aierzdorf " (Leipzig, 1839), p. 50. V\ impina's notice of Widman is quoted in full

by boncompagni in vol. ix., p. 209, of his Bullettino.
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1498 he was born about 1467, and therefore was only about
19 when he lectured on algebra in 1486. Wimpina gives the

titles of four of his books (Algorithmi) besides his Rechenung,

A complete list, containing six books* (besides the Rechenung],

is given by Wappler in Zeitschrift, vol. xxxiv., supp., p. 167.

The signs + and — in the German and Latin Algebras in

C80, §§160-162.

§ 160. It would thus appear that the signs + and — became
known to Widman by the German and Latin Algebras in

C 80. It is only in the hitter that the sign + occurs, and in

it the signs + and — are used systematically, so that we may
regard this Latin Algebra as the probable source of Widman's
knowledge of them. Their use was extended by him both

by his lectures and by his Rechenung, which is almost certainly

the first printed book in which they occur.

§ 161. There seems to be nothing to suggest who was the

author of either the German or the Latin Algebra in C 80.

We know that the date of the former is 1481, and that the

latter is not later than 1486. None of the earlier manuscripts

that have been printed seem to contain any trace of the signs

+ and — , and it is possible that the unknown author of the

Latin Algebra was the inventor of the sign + and the first user

of + and — for the addition and subtraction of mathematical

quantities. Wappler makes no suggestion with respect to the

origin of this manuscript.

f

§ 162. Of the two signs - is more freely used than + in the

Latin Algebra, and it occurs also in the words of the text [i.e. not

only connecting numbers and cossic signs), and it would seem not

unlikely that 4 might have been introduced as a complement
to — so that addition could be represented by a sign as well

as subtraction. A sign for addition is not absolutely necessary,

as the short word et could be used, but the use of a sign

corresponding to — clearly renders the expressions more
uniform in appearance and their treatment more symmetrical.

Nothing throws any direct light on the origin of the signs

* Wappler considered that these were the books to which Widman referred in.

the words ' prioribus nostris editionibus' (§ 157).

f Enestium suggested that Widman was himself the author of the Latin
Algebra, but merely on the ground that it was the basis of his lectures (Biblio-

theca Muthematicu, ser. 3, vol. iv., p. 90 ; vol. viii., p. 199).

VOL. LI. I
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themselves. It may be that — presented itself as the simplest

abbreviation that could be found, and which had not already

received a definite meaning. As for + it may have been

derived from — , and distinguished from it by merely placing

a vertical line across it, or it may have independently suggested

itself as a variant of the abbreviation for et. It has a certain

amount of resemblance to the mark used for et, and in a good

many cases in the Latin Algebra it is used for et, and in several

cases et is used where we should expect +. I infer trom the

Latin Algebra that 4- was intended to connect symbols or

numbers by addition, and that where it connects ordinary

words or sentences, or is used to introduce a consequence (as

in + proueniunt, + manent, etc.), this is due to an error of

transcription (see §§ 175—178).

Earlier manuscripts, §§163—164.

§ 163. Before making a more detailed examination of the

Latin Algebra in C 80, it is convenient to refer to some of the

earlier manuscripts on algebra in German libraries which have

been printed, and to describe the means employed in them to

denote addition and subtraction.

In vol. xl. of the Zeitsehrift* Curtze has printed ten extracts

on the rule of false and on algebra from the volume no. 14908

in the Munich Library.

Of these extracts the first two ([ and II) relate to the rule

of false, and the others (III to X) to algebra.

In I and II (pp. 35-49), which are in Latin, plus and minus

are applied to the error, but neither these words nor any other

special words are used for addition or subtraction.

No. Ill (pp. 49-50) is a short algebra in German of about a

page, which had been already printed by Gerhardt.j The word

und is used for addition and minder for subtraction, e.g. (p. 50)

"multiplicir die 2 dragmas minder ainer wurczen in sich selb,

so komen 4 dragma vnd ain zins minder 4 wurczen " (multiply

2 -# by itself and there results A + x2 — Ax).

No. IV (pp. 50—58), which is entitled ' Ptegule delacose

secundum 6 capitula', is in German. Subtraction is denoted

by mynder (or minder), and minus is also used, as in the

following sentence (p. 55) :
" Darumb multiplicir I'd wider den

tayler, das ist 9 minus \ dings, so werden 120 mynder 2\d

* "Bin Beitrag iur Gescliiclite der Algebra in Deutschland ira fiinfzehnten

Jahvhundert" (Zeittchri/i, vol. xl., supp., pp. HI—74).
t Monataberichte of "the Berlin Academy for 1870, p. 142. Curtze here gives

a more accurate version.
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gleich. Nu multiplicir id wider 9 minus ^3, das macht 93

minus £ censo." [Multiply x by the denominator 9— \x and
the product is equal to 120 - 1\*\ Now multiply x by 9 — \x,

giving %x-\f\.
Addition is denoted by und, mer, and juxtaposition, as

(p. 56) ' multiplicir 20 fl uider 1 censy vnd 53,Wirt gleich 2003
vnd 500.' [Multiply 20 by x*+5x and equate it to 200a; +500];

(p. 57) 'radix von 31 1 mer 2}/ [^31^+ 2^]; and 'Nu ist 33

minus 4 lb dem ander gleich, das ist 23 10 mer' [3a; — 4 is

equal to 2a; + 10]; (p. 54) ' 13 ^ censo' [x + ^x']; (p. 56)

ioo , r ioo 1 , %
. , rt .

t^ -

—

kJ (p- 57
)

8 mo1 19 vnd 4 macl,t 89 32
135 la; + 5 1

[8 times a; + 4 is 8a; + 32].

No. V (pp. 58—67), which is in Latin, contains the solutions

of four problems, which are explained at great length. For
addition the words et and cum are used, and for subtraction

demptis or diminutis. Thus we have

,
. 32 res et 45

, n . 15
(p. 59) -

; p. 60
_

' ' 1 census et 3 res '
KV

'

(p. 63)

\\ et radix de \%1 '

100 _ 200 res diminutis 500

1 res demptis 5 1 census diminutis 5 rebus
"

The word minus is twice used for subtraction, viz. in

'1 rem minus 5' and 'si minuo remanent V5 minus radice

de i£5-; si addo, provenient \f et radix de 1|£ ' (both on p. 63).

In no. VI (pp. 68-70), which is in Latin, minus is used
for subtraction and et or juxtaposition for addition. Thus we
have (p. 69) ' 1^ minus 4 equatur ty et 2 ', and '

3?// minus
3

I
^ H ' [3x - 3 = ±x + 31].

No. VII (pp. 70-73) is partly in Latin and partly in German.
For subtraction minus, minder, minner, or mynner is used, and
the words for addition are mer and und, juxtaposition also being
used: we have (p. 70) '1 von 69 minner 300 ist 2 ding
minner 100' [J of 6.C-300 is 2.C-100]; {p. 72) 'so pleibt 13
mer 27 gleich 23^ u

' [x+ 27 = 2§gaj] ; and 'multiplicir 15 mal
140.23, macht 2100. 303. ..so pleibt 1903 vnd 2 censy deia
anderu 2100 zall ' [15 times 140 + 2x is 2100 + 30a;. ..there
remains 190.r + 2a;* = 2100].

Nos. VI II and IX (p. 73) together occupy only 7 lines.

Addition is denoted by juxtaposition and the word und.
No. X (p. 74) is in Latin, and the word minus is used.

Addition is denoted by juxtaposition : thus (p. 74) '20 minus
li// in se sunt 1 census 400 minus 40i/, ' [20 -x multiplied by
itself is x1 + 400 - 40a;].
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§ 164. In vol. xlv. of the Zeitschrift* Wappler printed a

lecture given at Erfurt by Magister Gottfried Wolack in 1467

and 1468. It is one of the manuscripts in C 80, and relates

to the rule of three. No words are used for addition or

subtraction, which, however, scarcely enter into the questions to

which the lecture relates.

The German Algebra in C 80, § 165.

§ 165. I now come to the German Algebra in C 80, which

lias been already referred to in §153. Wappler prints a

portion of this Algebra on pp. 4—5 of his Programm, and an

additional question from it in vol. xliv. of the Zeitschrift. In

the part given in the Programm minner or mynner is used in

subtraction, except in the passage where — occurs, and und is

used for addition. The quotations in §§ 153—154 contain ex-

amples of the use of minner and und, and the passage in which —
occurs. In the question printed in the Zeitschrift subtraction

is denoted by mynner and addition by juxtaposition, e.g. 140 2
C

is equivalent to 140h + 2c. This manuscript is dated 1481.

|

The use of the signs + and — in the Latin Algebra in C 80

and by Widman, §§ 166-169.

§ 166. The Latin Algebra (which is concerned only with

the solution of simple and quadratic equations and problems

giving rise to them) occupies 20 quarto pages (pp. 11-30) in

VVappler's Programm. The primary rules (p. 11) are given

in words, and neither — nor -f is used ; the word minus is not

used to indicate subtraction, and plus does not occur at all.

The 19 secondary rules are given symbolically, and in them

+ occurs no less than ten times (p. 13), always in expressions,

such as 3^ + 4^/. It first occurs in the text in the sentence
' multi plica lj et tres in se, veniet vnus

JJ + 6j et 90 equates

12j' (p. 13). Here et is clearly right in the first expression,

as it is followed by tres, but the second expression should

be jj + 6j 4- 90, and this is confirmed by the resulting equation,

which is written 'vnus $j$ + 90 equates 6^'. As mentioned

in § 155, the sign — first occurs lower down on the same
page in the sentence ' radix aggregati — medietate i/» est

valor rei '.

* "Zur Geschiclite der Matbematik im 15. Jabrhundert", Zeitschrift, vol. xlr.,

Bist.-litt. Abt., pp. 47—56. Wappler mentions tbat tbe manuscript lias been
corrected by Widman, wbo presumably used it in bis teaching.

t ZvitsckriJ't, vol. xliv., aupp. vol., p. 539.
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7

On p. 14 the sign -f- occurs once (in oe f $$), but et was
probably intended. The first occurrence ot' the sign — in a

formula is on p. 16 in the expression 100 — 1;//. h\ the

subsequent pages + and — are freely used in formulas.

Twice on p. 16, and a number ot" times on the next page,

and occasionally on all the following pages, + occurs where
it should be et. Thus + should be et in '+ radix' (p. 16);
'differeneia... inter d+c 3 -f inter c et b 4' (meaning 'differencia

internet c, 3, et inter c et b, 4'), '+ proueniunt ', and ' +
denominator ' (p. 17).

The words minus and plus (with the meanings 'diminished

by' and 'increased by') are first used on p. 14, where the

former occurs once and the latter three times, the following

word in all four cases being medietate. The word minus in

this sense occurs only twice more in the Algebra, viz. on p. 21,

where it again precedes medietate, and on p. 24 where 100
minus 1^ is preceded and followed by similar expressions in

which the sign — is used.*

After p. 14 the word plus is used about twenty times: it

"lias the meaning 'increased by' in '+ plus dimidio' (p. 15);
' 1 et plus r tertij ' (p. 16) ; and ' plus medietate ' twice (p. 26)

:

and it has the meaning ' more ' in the other cases, as e.g. ' cum
dimidio rei plus' (p. 15); "in duplo plus te', ' plus quam in

duobus' (p. 18); 'quod est 2 plus' (p. 27).

§ 167. A careful study of the Latin Algebra, as printed

by Wappler, seems to me to show that 4- was a sign which
was meant to be used in formulae (i.e. in expressions connecting

numbers and quantities involving the cossic signs) in the same
manner as — , and as a complement to it. It in clear that in

the manuscript of the Latin Algebra, as it appears in C 80,

4 must be quite distinct from the sign for et, or Wappler
would not have printed -+- where the sense requires et : but

in the original manuscript from which the Latin Algebra in

C 80 was copied, the signs must have been sufficiently alike to

cause the transcriber to make mistakes

On the wrapper of his Proyramm Wappler reproduces a

portion of the Latin Algebra in facsimile. The sign for et

occurs six times in this reproduced portion, but the sign 4-

does not occur at all. The signs for et, which have some
resemblance to a 7 with a horizontal line through it, differ

somewhat among themselves. Another specimen of Widman's

*'eritergo niaior pars 10<p — \\)/. Multiplicaudo 10</> minus li// per h/ proueniunt

12
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handwriting is given by Wappler in vol. xxxiv., supp., p. 169,

of the ZeitschrTft, Here the sign for et occurs twice, but the

sign + does not occur.

There is another manuscript in C 80 (pp. 295-300') in

which + and — are used. Extracts from it (tor comparison

with Riese's Coss) are given by Wappler on pp. 7—9 of his

Programm. Wappler states (p. 7 of his Programm) that 35

of Kiese's questions are taken from this manuscript, but he

gives no further information about it, and he does not, I think,

refer to it again. He does not seem to have directed his

attention specially to the signs + and -, nor does he refer

to their occurrence.

§ 168. As mentioned in § 156, Widman wrote a number
of problems and solutions on the margin of the Latin Algebra,

42 of which have been printed by Wappler. In most of these

solutions (as printed) the signs + and — are freely used for

addition and subtraction in the formulae, and there is no

instance of + being used for et in the text. There is one

problem, however, in which Widman has connected numbers

by + instead of et. This is: Given two numbers 9 and

12, and another number 10, to find a fourth number 1^

such that 9-]^ is to 12- \^ as 10 is to 1^. The statement of the

question by Widman is as follows: "Propositis duobus numeris,

scilicet 9 + 12, si petitur ad quemlibet tercium, puta 10, aliquem

numerum maiorem, cuius quidem maioris 1 subtracta de primis

duobus, scilicet 9 + 12, residuum habeat, eandem proportionem

quam numeri nunc ultimo inventi."* The value of It// is found

to be 16, and the solution concludes "cuius quartam partem,

scilicet 4, anfero a 9 + 12, et manent 5 + 8 habentes eandem

proportionem, quam 10 + 16, quia ubique est dupla." Here

+ means et and not addition, but in the course of the work

+ is used correctly in 120 + -]j and 4800 + h. I cannot ex-

plain this lapse except by supposing that Widman wrote +
as he might have written the sign for et, or as a comma

* Zeitschrift, vol. xliv. (1899), supp. vol., p. 547. This curious question was

probably suggested to Widman by a baiter or exchange question which (in the

manner in which it was solved) led to the proportion 9- 4,i// : 12 — $»^ :: 10 : «/».

Widman's marginal question which I have quoted occurs on p. 3o7' of the Latin

Algebra (Wappler, Zeitschrift, be. cit., p 547) and the barter question on p. ;>.«s'

oi the Latin Algebra (Wappler, Programm, p. 24); but it had been previously

given in the extract no. IV (Kegule delacose secundum 6 capitula) from tlie Munich

Codex L4U08 (Curtze, Zeittehrijt, vol. xl., supp., p. 64). An erroneous solution of

r question (which is itself confused) is there given, and in this solution, which

is reproduced in the Latin Algebra, the value of t/» is found from the proportion

L2- .',</' :: H»:i//, which may have led Widman to form a question which

Bhould lead dnectly to this proportion.
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might be written now, to connect, or separate, 9 and 12, and
continued the use of the sign.*

§169. Coming now to Widman's Reclienung, the signs 4-

and — are used as sit the present time. When they are first

introduced they are defined as denoting mer and minus (§11).

In explaining the rule of false W idman uses the words pins

and minus, but in the diagram they are replaced by + and —

,

which are placed between the position and error, as eg. in

6 + |

X
7 +H

Here the signs do not indicate addition or subtraction or any
use of the word and.f

Enestrorii's views on Widman's use of
'+ and —

, §§ 170-172.

- § 170. In vol. ix. (1908-9) of ser. 3 of the Bibliotheea Mathe-

matica EuestromJ has maintained that in Widmau + is not a

true mathematical sign, and that it is only in certain places

* The same use of + for et occurs in a problem in Riese's Cos*. This problem

is one of those which are written on the margin of the Latin Algebra (§ 156) and
which were translated into German by Riese. The question is to find two numbers in

the proportion of 3 to 2, such that their sum is equal to their difference. The
Latin original begins: "Dentin.' 2</» in proporcione sesquialtera", and + and —
are not used in the solution. Itiese's translation is "Item gib mir Zwu Zalnn die

sich zusamen haltenn als 3+2 In proporcione sesqualtera so ich evne Zal zur

andernn addir Das gleich so nil komenn sam wan ich eyne mit der andernn diuidir

thu im also *etz die geringistenn Zalnn in proporcione sesqualtera wesende als

3 + 2 Multiplied itzliche mit 1 1|/ werden B\f/+ 2\p addir Zusamen komen 5^/ gleich

so ich o«^ in 2i// diuidir als \h<j> teyl <j> in <(/ kommen ^ Multiplier mit 3 + 2

werdenn -fs vnnd -j
fi

5 ". Here + means and, and its use cannot be justified Itiese's

Coss was written iu 1524, but was not printed. A full resume of its contents, made
from the original manuscript in the School Library at Mavienberg, was published by

Berlet in 18(J0 ("Programm der Progymnasial- und Realschulanstalt zu Anna-
berg") and again in 1892 ("Adam Kiese, sein Leben . . . Die Coss von Adam
Riese von. ..Bruno Berlet", Leipzig and Frankfort). Wappler has given the Latin

text, and Itiese's translation of this and other pioblems from the margin of the

Latin Algebra on pp. 5-7 of his Programm. The problem is No. 38 of Riese's

Coss [Adam Riese ... p. -to). There are slight differences in the question as printed

in VVappler's Programm (p. 5) and in Berlet's Adam Riese (p. 15). I have followed

the former.

f Widman's Reekenung is the first printed book in which + and — are used in

the rule of false, and it is not unlikely that he was the first person to so apply them.
Grammateus followed W idman in writing the position and error in the same

line, but he omitted the cross, and wrote simply

300 + 77

240 + 77

This placing of the signs + and — between the position and error, i.e. between
numbers not connected by addition and subtraction, persisted for many years

(§§23, 85-87).

X pp. 155-158. See also vol. x., ser. 3, pp. 182-183.
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that - is a true mathematical sign. In support of this opinion

lie says tiiiit in the first question (quoted in §11), where 4-

and — occur, the meaning of the words which define + and —
is " the numbers which in the table stand after + denote

overweight : the numbers which in the table stand after —
denote underweight", and he then refers to ' darnach addir +
vnd — zcusain '

(§ 26), which he interprets as ' add the numbers

which denote the surplus and the deficit' (addiere die Zahlen, die

den Ueberschuss und dau Fehlende bezeichnen). He says that

the word melir is only once identified with +, and that + mean3

and, and is used in places where it cannot be read as plus, and

he instances § + f* (§ 21 ), where these fractions are not to be

added: and lie expresses his conclusion in the words " Bei

Widman ist das Zeichen + also nicht ein rein mathematisches

Zeichen, und es ist datum irreleitend zu sagen, dass es als

gewohnliches Additionszeichen benutzt wird ". He adds that

it would be just as correct to say that every abbreviation

used in the Middle Ages for et served as a usual addition sign.

With respect to the sign — , Enestrom says that it originally

meant, underweight or a small deduction, but that in some

places it corresponded to our subtraction sign, and his con-

clusion "Bei Widman koinmt also das Zeichen — zuweilen als

gewohnliches Subtraktionszeichen vor, aber es wird nicht re-

gelmassig benutzt, und der Leser kann nicht einmal ersehen,

wann und wie es zur Anwendung kommen soil".

§ 171. From what I have already said it will be seen that

I disagree with Enestrom, and think that Widman used 4-

ail(J _ as algebraical signs in the same manner as they are

used in the present day. Widman was an algebraist, for we

know that three years before his Bechenung was published he

lectured on algebra, taking the Latin Algebra in C 80 as the

basis of his lectures; and it seems to me that in the Bechenung

he merely extended to arithmetic the signs which he was

familiar with in algebra, fully realising and appreciating the

advantages of the use which he was making of them. As for

the three cases where + occurs when it should have been und,

viz. \ vfi J+J (§9),'Kegula angmenti + decrementi' (§26) and
1 ''; +V '

(§ 21), the first two are easily explainable as errors of

the printer or author, and the third can be justified. The

first expression occurs in the sentence " 9 fl J vn \+ \ eynss fl

* Enestrom also refers to p. 131 of vol. i. of Tropfke's "Geschichte der elementar-

mathematik ' -

(1902) for other evidence. The only quotations on that page which

seem to me appropriate are 'ivn^+i' a»d 'Kegula augmenti + decrementi'

(§§9, 26).
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wy kunie 36 elln machss alsso Addir ^ viT \ vli £ zu samen
kumpt £-? eynss fl ". It is clear that + is an error, due to the

printer or writer, for they should be all vii's or all -\ 's, and

the + in ' augmenti + deerementi ' is a similar error. As for

5 + | the meaning is that if the mixture is to be worth 7 fl,

| consists of wine at 5 fl and f of wine at 10 fl, and he verities

the result by saying that § of 5 fl is 3 fl and § of 10 fl is 4 fl,

the sum of which is 7 fl.*

§ 172. I am surprised that Enestrom should associate +
and — with overweight and underweight in Widman merely

because the Hist question in which they occur, and in connection

with which they are explained, concerns weights. Widman's
explanation is quite general, viz. that — is minus and + is mer,

and he is just as ready to apply his signs to money as to

weight. De Morgan and Gerhardt, who had only the Rechenung
before them, might not unnaturally give a specific meaning to

the signs on account of the kind of question in which they

first occur (although 1 do not think that a study of the book
itself supports this view), but Enestrom knew of Widman's
Latin Algebra in C 80 and of his marginal problems, and was
awaie that he was familiar with the use of the signs in algebra.

Also in the question in which the words 'darnach addir + vnd—
zcusam ' occur Widman is following his own rule ' teyl. mit

der minnerung vnd merung zusam geaddiret,'t and + and —
stand for the merung and minnerung.

The sign — seems to me to be used by Widman exactly

as it would be now, and on the whole to be used regularly,

although it does not occur on all occasions when it could have
been used.

* A move doubtful use of + occurs in the next question, where wines worth
20S-, ISS-, MrS-, 8S- are to be combined so that the mixture may be worth 123-.

Following the rule he has given, he doubles the value 12, making 24, from which
he subtracts the sum of the two smaller values, viz. IS, leaving 6 'and 90 much
take from that for 20^+l.!

>a-' (so vil nym vonn detn pro 20S-+15S-). He then
subtracts 24 from the sum of the larger values, 35. leaving 11, and 'so much must
be taken from the two cheaper wines' (so vil muss ich neme der geringem zweyer
weyn). He then adds 11 and 1 1 and •> and 6 and obtains the divisor 34, at which
point he leaves the question directing the reader to follow the rule. If he had
completed it in the same manner as in the previous question, corresponding to g + \

he would have written 44 + Ji + {'* 4- &, indicating that \\ was to be taken of the SOS-

wine, J] of the K)S wine,
jft

of the liiS wine, and £ of the 8^ wine. In 203-+ 153-

the + means and, for ^ is to be taken from the 2u& wine and from the loS- wine;
hut even here there is an underlying notion of addition. It is of course possible

that the + in 2 1 3 + 153 is a misprint ; as it also may be in
J + |.

t The rule is quoted in the note on pp. 1G, 17.
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Irregularities of expression in Widman''s Rechenung,

§§173-174.

§ 173. Widman's book was a compilation from various

sources, with probably some original questions. Presumably
lie frequently transferred questions just as be found tliem (or

merely with the numbers altered), but sometimes be varied them,

as in the eggs and pence question (see § 26), using + and — . The
mode of construction of the book would thus suffice to explain

any slight irregularities in the use of the signs. It is also to

be noticed that VVidman does not make any attempt at

uniformity: e.g. in the same question he has 2 ct 18 lb and

3 ct + 5 lb ; and he follows the loose phraseology of his time.

Thus he divides 20 fl among several people so that the first

has llfl+£, the second 2* fl + 1 ... : lie divides 100 fl among
three people so that the first has \-\, the second ^ — £, the

third \ - }. : a tile weighing 2 lb is broken into three parts

of \, ^, \: three persons buy a horse to which they contribute

respectively ^, j, §.* in all these cases the numbers given

merely indicate proportions. In one question he writes

'multiplicir \ j |- durch eynader f'acit 96 ',t but in a previous

question where ^, J
( , ^ were involved, he had expressed himself

more correctly, and directed that the denominators should be

multiplied (multiplicir die riermer mitt eynander facit 105).+ and

lie also does so later on when he has |-, £, ^ and I, j, I, and

directs that the denominators be multiplied, giving 24 and 60.

§

§ 174. The question in which '| vnnd 6 iner', 'j? vnd8mer',

etc., occur has been criticised in § 27, the problem being

indeterminate as treated by Widman.|| (See also §§ 51,

62, 186).

* It seems worth while to give the actual wording of the first three of these

questions "Itrii 6 gesellen teylen 20 fl. Der erst sol habn IJfl + J Der ander

2£ fl + i Vnd die andern 4 solln gleich teil haben. Nu ist die frag was ydem gepnr
7A\ seym teyl Machss also Reducir dye teyl facit y + ^ die siimir fa. V^ addir ilie

4 gesellen dar zn facit '-!

2
"
4

' ! ist
'ffl

. .
." (p. I9.Y). Here the meaning is that the

G portions are to be proportional to y, y, 1, 1, 1, 1.

"
1 1 tii drey gesellen teylii 100 fl vn der erst sol habu ^ - k Vl>d der ander \ — £

Vnd der drit ±-± Nn ist die frag &c. Mach-s also 4 - i ist 12. Vnd |- J ist 20.

Vnd * — I ist »0. Nu find eyn zal in der du haben magst \ ,,\, r
,' Das ist 1S0U

. . .

"'

(pp. 195'—196). Here it would be more correct to say that £ — % is ~fc tfcc.,

and to find a number which contains 12, 20, 30.

"Itffi es ist eyn Czigel der ist gebrochn in !1 stuck das erst h das ander t dr.

drit \ vnd der czigel hut gancz gevvegn 21b Nu ist die frag wie vil itlichss stuck
wigt . .

." (p. 1-H)j.

t p. 110. \ P- "2. § p. 198.

||
Kncstrom instances this question in support of his view that Widman treated

mer as distinct from + ('kanii nicht fltatt desselben + gesetz werden'). 1 think

that § vnd G mer, ij vnd G, $ G mer, and § + G would all have seemed equally correct

and equally natural to Widman.
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There issometimesin VVidman a certain balancing of the signs

-f- and — : for example, in the question about the corals (§ 19),

as the fractions of the weights are all positive, the weights are

written 69^, 59|, etc., but in the money, as one amount con-

tains a negative fraction, viz. 3 — |, the others are written

6 + 1 5 + |- , etc.

The Latin Algebra in C 80, §§ 175-178.

§175. As has been said, there seems every reason to

believe that VVidman derived his use of the signs + and —
from the Latin Algehra, and so far as 1 know this is the

earliest manuscript in which they have been found to occur.

It seems to me that the signs are used in this manuscript just

as in Widman's Bechenung, and as they are used at present.

Enestiom, however, takes the same view of their occurrence

in this manuscript as in Widman's book. He mentions* that

et was used for addition in the Middle Ages (as e.g. in octo et

tres), and it was natural that addition should be denoted by
the same ligature without its becoming a mathematical sign,

and he proceeds: "It is known that Widinan had in his

possession a manuscript Latin Algebra, in which + was used
as a ligature for et when et was an addition-word, as well as

otherwise". .Now to me it seems clear that in the Latin

Algebra + and — were purely mathematical signs, and that

when + appears in the text with another meaning this is due
to a slip in writing or an error of the transcriber.

f

If + is merely a ligature for et, why does it not appear
always for et? Why is it nearly always used in formulae and
only occasionally in the text, and when it does so occur why
is it used in preference to et when it is surrounded by ets?

§ 176. In the Latin Algebra, as printed by Wappler in

his Programm, the sign + does not occur on the first two pages

(pp. 11 and 12): on p. 13 it occurs 13 times, always con-

necting two cossic terms: on p. 14 it occurs only once (in

* Bibl. Moth., Per. 3, vol. x., p. 182.

f 1 think there can be no doubt that + as a mathematical sign in the Latin Algebra
represents et and not plus. In the Latin Algebra ' plus inedietate ', 'minus medietate'
and •— medietate' occur, but '+ medietaLe' does not: if it had occurred it would
have indicated that -+- stood for the word plus. In my view + was used to connect
symbols, and when it occurs before a word it is a slip or a transcriber's error for et.

There are two cases in which, standing between a symbol and a word, its meaning
is doubtful, viz. 'liHbet...U// + duos tjt' (p. 18), and '!>// + tres ulne constant (10

'

(p. 22). 1 think that in both cases + is an error for et, but if + was used inten-
tionally it would show conclusively that it stood for et and not for plus; for if it

represented plus it would be followed by 'duobus <j>
' and 'tribus ulnis'. In the

case of '+ plus dimidio ' (p. 15) the plus may have been inserted by inadvertence,
or it may have been intended for et, which latter supposition is supported by the
fact that ' et plus r tertij ' occurs on the next page.
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oe+^, where probably et was intended). On p. 15 there are

77 eta, and 3 -f's all of which mean et (regarding 4- in

'+ pins dimidio 1

as meaning et) : on p. 16 there are 48 ets,

and 3 +'s which mean +, and 2 which mean et :* on p. 17

(on which occurs the greatest number or'+'s for ets) there are

27 ets v and 19 -f's which mean -f, and 8 which mean et : on p. 18

there are 38 ets, and 11 +'s which mean -f, and 3 which mean
et: on p. 19 there are 26 ets, and 11 f's all of which mean + :

on p. 20 there are 30 ets, and one + which means -f , and 2

which mean et. In the next 10 pages there are 366 ets, and
49 -f's which mean +, and 13 which mean et.

Thus on pp. 16—30 (inclusive), which contain all the

examples of the rules, there are 535 ets, and 122 +'s, of which

94 mean -f , and 28 mean et : of course some ers may be errors

for -f's, as in jj + 6j et 90, referred to in § 166, hut as et could

always be used for -f , it is not in general possible to determine

which ets should be +'s,f although among the -f's the context

almost always enables us to decide which should really be +
and which should be et.

The principal uses of the word 'and' are (i) additive, (ii) con-

nective, (iii) introducing a consequence, as e.g. in 'a hundred

and three', ' A and B\ 'subtract a from b and theie will

remain', etc. In the whole Latin Algebra there are 139 +'s,

of which 107 are additive, while 32 have non-additive meanings:

and of these 14 are connective and 18 introduce a consequence.

§ 177. I do not think that 1 am straining what is likely to

have happened in supposing that three -f's in W idman's

Rechenung are slips or misprints, or that the -f's in the Latin

Algebra, which do not occur in formulae, are errors. There

are certainly other printers' errors in the Rechenung, and

EJnestrom has himself suggested that by a slip Widman has

written Frontinus for Boethiusj; and, in regard to the Latin

Algebra, he accepted Tropfke's suggestion that perhaps the

sign used throughout for Humerus should have been a variation

of the initial letter of dragma, and that the unskilled transcriber

wrongly copied it, as the o with the sloping line through it.§

* In ' If et I et 2 rebus + f ' I regard the + as meaning et, as is shown by the
context.

t Another example in which it is clear that et should be + is ; —

,

which is followed in the next line by -— z-^- (pp. 26, 27).
128} + 256^

\ Bill. Math., ser. 3, vol. viii., p. 195.

§ Id., p. 200. The Latin Algebra contains numerous errors and inaccuracies,

many of which are probably due to the transcriber. Thus on p. 15, in the question
in which 'cuius radix + plus dimidio' occurs, 4 is written for I,1

,
and 2 for 7 in the

final result, which is in effect given as J2JJ-H instead of J7-J-JJ-HJ. On p, 16, in
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§ 178. It is to be hoped that further investigation will

show the origin of the Latin Algebra in C 80, and perhaps
determine to whom we owe the signs + and -. The sign —
whs used in a hesitating and uncertain manner in the German
Algebra, but both signs were freely used in the Latin Algebra.

All the evidence points to the signs having been introduced

into mathematics by the German algebraists of the fifteenth

century, and to Widman having transferred them from algebra

to arithmetic, and it seems almost certain that he was the first

to use the signs in print.

The word minus (or some equivalent) was a necessity in

mathematics, hut not so the word plus, for et could always be
used in its place, except in the rule of false.

There seems to he absolutely nothing to show why — was
used fur minus. It was almost the simplest mark that could
he made, and this may have been the origin of its use. It is

likely that the sign + was suggested by a ligature for and,

bur it is not impossible that it entered algebra as a counterpart

to — , distinguished from it by making a stroke through it.

There seems hut little reason to connect + and — with any
marks used in the warehouse.

Jn the case of printed books the sign — was already at

hand among the printer's available type, hut the sign -f had
to be specially made.*

Sources of Widman s Rechenung, §§ 179—186.

§ 179. Widman''s Rechenung was derived from the Bamberg
Arithmetic and from earlier mathematical manuscripts. The
Bamberg Arithmetic has been fully described by Un^erf and
Cantor,^ and Unger states that it was much used by Widman,
who borrowed many passages word for word. The Bamberg
Arithmetic was itself derived from manuscripts, one of which,

the Algorismus Ratisponensis, has been described by Rath.§

the question in which ' 1 et plus r tertij ' 1 + - occurs, there is a confusion

between the sixteenth and seventeenth rules, and the equation should have been
given as ' 6 oe eqnantur 3})+2}' instead of ' 6 ce et 3\\ eqnantur 25'. On pp. 15
and 16 extrahere is written for subtrahere. On p. 13 the word census is defined,

and on p. 22 the dative censui occurs, but on pp. 15, 16 censa,
$
sa

,

$$orum occur aa
plurals; and there are many such irregularities.

* I have already remarked (p. 34, note) that it seems likely that the use of the
words plus and minus (instead of + and — ) by Grammateus in certain places waa
due to the want of type of a suitable size. See also p. 36, note.

t Die Methodik,yp 87—40.

J
Vo> ktwiffen, vol. ii (2nd ed.), pp. 221-227.

§ Jiibl. Math., ser. 3, vol. xiii., pp. 17-22 (" Ueber ein deutsches Rechenbuch
aus dew 15. Jahrhundert "J. This manuscript is referred to in §§ 185-186.
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This Algorithmus and other manuscripts, as well as the

Bamberg Arithmetic, show that Widman was merely following

the general practice ot the time in giving a number of special

rules, each relating to a particular and very restricted kind of

problem. A considerable portion of the Rechemtng must have

been compiled by Widman from earlier writings on arithmetic;

but some of the questions are of an algebraical character, and,

as Widman was an algebraist, he would naturally have availed

himself of the Latin Algebra in C 80 and other algebraical

sources, and he may well have been the Hist to introduce

some of these algebraical questions into arithmetic. It seems
therefore to be of some interest to trace the history of a

few of these questions as far as the writings already referred

to in this paper* permit. Of course some of the algebraical

questions could be solved by the rule of false, and so may be

said to have already belonged to arithmetic; but those in

which the solution depended on a quadratic equation could

only have been derived from algebra.

§ 180. Under the beading 'Regula lucri 'f Widman gave

two examples which occur in the Latin Algebra in C 80.

The problem to which the rule relates^ is: Given the principal

and compound interest for two years, find the interest for the

first year; and the rule is: Multiply the principal by the

compound interest, add to this product the square of the

principal, extract the square root of this sum, and subtract

from it the principal: t.e if a is the principal and b the com-
pound interest for two years, then the interest for the first

year is »J(ab + a
2

)
— a.§

His examples are: (1) If in two years 20 fl have become
30 fl, what was the interest for the first year? The rule gives

the interest in florins as \/(20 x 10 + 400)— 20 = *JGQ0 -20: and

(2) If 25 fl have produced 24 fl interest in two years, what

was the interest for the first year? The rule gives

V(600 4 625) - 25 = 35 - 25 = 10 fl

* viz. Wappler's Programm of 1887, and papers by him and Cuitze in vols.

xxxiv.—xlv. of the ZeiUchrift.

t v\ idman, p. 127'.

% Widman gives rules without any indication of the kind of question to which
they relate : this has to he inferred from the example or examples which follow.

Thus in thin case, after the heading Regula lucri, lie proceeds :
" Diefle regel roltii

alzo verfuren Multiplied die hauptsum yn den gewin DaniHch Multiplied dy
hauptsuin in sieh Belbsc quadrate Vnd addir das product zu dera ersten product
Vnd die wuitzel der gantzen sum so du da von subtrahirest dy hauptsum. bericht

den gewin der bauptautn Vnd 1st Reclit."
v- Widman might have given the rule in the form " Add the principal to the

compound interest and multiply the sum by the principal . . .", equivalent to

4[{a + b)a\-a.
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These questions are taken from the Latin Algebra* The
first question also occurs twice in the manuscripts printed by
Curtze from the Munich Codex 14908 in vol. xl. of the Zeitschrift,

and described in § 163. It first occurs in German in IV
(Regule delacose secundum 6 capitula), p. 54, and in Latin

in V, p. 61. Tn IV and in the Latin Algebra it occurs as an
example of the ' Capitulum quartum ', which relates to a

quadratic of the form x* + ax. — b, giving the rule for its

solution.

§ 181. Under theheading ' Regula Exessus'f Widman gives

another rule which has been derived from a quadratic equation

of the same form. The problem is: Given the product of two
numbers, of which one exceeds the other by a given amount,

to find the numbers, and the rule is: square half of the excess

and add this square to the given product: extract the square

root of the sum, and from it subtract half the excess: this

gives the smaller number, i.e. if a is the excess and b the

product, the equation is x'+ ax = b, whence x= \/{\a'+ b) — \a.

His example is " 1 have 4 florins more than you, and my money,
multiplied by yours, is 96 ". The rule gives V(4 + 96) - 2 = 8,

which is the smaller of the two sums.

The problem described under the Regula excessus is to

find two numbers when their difference and product are given.

1 do not find a question of this class in the Latin Algebra or

elsewhere, which is curious, as a similar question in which the

sum and product are given occurs in the Latin Algebra, viz.

to divide 10 into two parts such that their product is 5.% The
equation to which the latter question gives rise belongs to

'Capitulum quintum ', which consists of the rule for the

solution of an equation of the form x 2 + b = ax.

§ 182. Cantor§, referring to the Regula lucri and the Regula
excessus, asks whether Widman can really have failed to

notice that he has taught the same procedure under two
different names, and says that this would have seemed in-

credible, especially as Widman was acquainted with the 'rule

* \Y applet's Programm, pp 21 and 22.

t Widman, p. 1)8' In the heading excessus is printed exessus. After the

heading Widman proceeds: Also soltu procedirn in dieser Regl. Alultiplicir dec
vbertrelug das halbe teyl ynn sich selbst vnd das product addir zu der bauptsum
Darnauli nym radicem quadratam des selbgn aggregates vnnd do von subtrahir

das halbe teyl der vntterscheyd ader vbertretung vnd das vberig ist die kleyner zal.

zu weliclier so du addirest die vbertretung erwechst audi die grosser".

I Wapplei'e Programm.j). 24.

§ Vorlesungen, vol. ii. (2nd ed.), p. 234.
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called Algobre or Cosse', and had given lectures on algebra,

and lie adds that in spite of better knowledge be seems to

bave yielded to the tendency of the time to indulge in very

many rules and conceal poverty of thought by abundance of

names.
This criticism seems incomprehensible. Widinan is giving

rules for particular problems, and the rule or formula in the

liegula lucri is not the same as in the Regula excessus, being

\/(ab + a) — a in one case and \f {\ci' + b) - \a in the other.

It is true that both rules are obtained by solving a quadratic

equation of the same form, and if Widinan had been writing

an Algebra he would have put both questions under the

' capitulum quartum'; but in an arithmetic he could nut have

given the general rule for the solution of a quadratic equation

of the form 03* f ax = b, nor indeed could he have shown that

the problems in question depended upon such an equation.*

§ 183. The curious questions in which '6 eyer — 23' are

bought for '43 + 1 ey ',f 3 being the symbol for pence, would

seem likely to have been contrived by Widinan to display the

me of + and — , and so it was taken to be by Cantor, X but in

fact it is an old question which occurs twice in the first of the

manuscripts described in § 163. The first of the two questions

is " Septem ova demptis 2 denariis sunt empta pro 5$ et uno

ovo : queritur quanti precii est ovum", and the second is

"4 ova demptis 2 denariis emuntur pro 7.9 et ovo, queritur

quantum precium est".§ They are solved by the rule of

false, and it is noticeable that demptis is used instead of minus,

although plus and minus are used in the final statements of

the positions and errors throughout this manuscript. It is

difficult to see what would have suggested such a question

originally. It afforded Widinan a good example of the use

of the signs +- and —

.

§ 184. Another kind of question of some interest is that

which is given by Widinan under the heading Regula aug-

menti + decrement (§26). The first example is: if a man
pays 12 pence a lb, he has 37 pence over; if he pays 15 pence

* Enestrom also tins pointed out that Cantor's criticism is unjustified. Bibl.

Math., ser. 3, vol. viii., p. 195.

t W'idman, p. 1 15.

j Vorlegwigen, vol. ii. (2nd ed ), p. 230.

§ Zeitschrtft, vol. xl., supi>., p. 47. Knestrom also lias remarked that the
question about the eggs and pence occurs in this manuscript (Bibl. Math , ser. 3,

•vol. viii., p. 195).
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a lb, lie is short by 44 pence : how many lbs did he buy, and

what was the amount of his money ? In the second example,

if a man pays bis workmen 5 pence each, he has 11 pence

over; if he pays 9 pence, be is 17 pence short. This question

(with different numbers or in different forms) occurs in three

of the manuscripts described in § 163. In manuscript II* it

is solved by the rule of false, and in IV t and VI \ by algebra.

In II and VI it relates to the payment of workmen, and in

IV to the purchase of ells of cloth. Widman's examples

relate to the purchase of lbs of aniseed and the payment of

workmen. § His first question is noticeable because of his use

of + and — to denote the terms to which these signs are

prefixed (§§26, 172).

§ 185. Besides the questions depending upon quadratic

equations and those involving 4 and — there are a number
of problems and questions in Widman which are of some
historical interest, as they have been ttiken from earlier

Writings. In the paper by Rath in the Bihl. Math., referred

to in § 179, he has described the Algorismus Ratisponensis

(middle of the 15th century) and a Vienna manuscript Codex
Vindob. 3029 (of about 1480) : and he has compared them

with the Bamberg Arithmetic (1483) and Widman's Becheuung

(1489). ]| The third part of the Algorismus Ratisponensis relates

to practical arithmetic, and Rath states that it contains about

250 problems, of which 43 are found in the Vienna manuscript,

42 in the Bamberg Arithmetic, and 51 in Widman, the questions

having the same numbers or only differing slightly. He
further states that 18 are contained in all three works, that

18 more are common to the Vienna manuscript and the

Bamberg Arithmetic, while Widman has none in common
with the Vienna manuscript alone, and only two with the

Bamberg Arithmetic alone.

* Zeitschrift, vol. xl., supp., p. 40. f Id., p. 57. J Id., p. 68.

§ A similar question, relating to workmen, is given on p. 117 of Borgi (1484),

and is solved by the rule of false. Rath states that questions of this type occur

in the Algorismus Ratisponensis, the Bamberg Arithmetic, and the Stuttgart manu-
script of I4ss referred to in the next note (Jiibl. Math., ser. 8, vol. xiv

, p 217).

||
Bibl. Math., ser. 3, vol. xiii., pp. 17-22. At the time of his death Curtze had

prepared for press a copy of the Algorismus Ratisponensis, drawn up from the two
Munich manuscripts Cod. lat. 14783 and I49U8. This copy and Curtze's intro-

duction have been used by llath. Curtze states that both manuscripts of the

Algorismus Ratisponensis emanated from the monastery of St. Bmineran at

Regensbmg, and that Frater Fridericus was the scribe and partly the author
(1456-1461). Curtze also referred to the Algorismus Ratisponensis in the Central-

blatt fiir Bibliotkekmesen, .lahrgang 16 (1899), p. 286. Frater Fridericus was the

scribe of some of the manuscripts referred to in § 163.

In a subsequent paper {Bibl. Sfath.,sev.3, vol. xiv., pp. 241-218) Rath has given
an account of another luauuscript of date 1188 in the Stuttgart National Library.

VOL. LI. K



1 30 Dr. Glaisher, On the early history of the signs

"Wid man's book itself conveys the impression that several

of liis non-eommeicial questions (besides the familiar puzzle

questions) were derived from previous writings without sub-

stantial alteration (see e.g. §28); and Rath's comparison with

the manuscripts and the Bamberg Arithmetic shows that this

was the ca3e.

§186. Rath mentions* that the Algorismus Ratisponensis

lias been used by succeeding writers in a 'somewhat uncritical

manner' (in ziemlich kritikloser VVeise), and he selects as an

illustration the question which was quoted from Widman in

§ 27 (p. 18). Rath gives the problem and solution as follows:

" 384 fl are to be divided among 4 persons, so that A receives

| and 6 fl, B § and 8 fl, C | and 10 fl, D £ and 6 fl. Find the

chief denominator 720, the half of it is 3G0
; § of this is 240,

6 added gives 246. So many parts belong to A ; for B, C, D
we find 224, 310, 321 parts. In these proportions the sum
is to be divided ".t Rath states that this solution occurs in

almost the same words (diese Losung findet sich in fast woit-

liclier Uebereinstimmung) in the Algorismus Ratisponensis,

the Vienna manuscript, the Bamberg Arithmetic, and in

Widman. It will be noticed that 720 is the number obtained

by multiplying together all the denominators, and that it is

halved, giving 3G0, the number used: but there is no apparent

reason why it should not have been divided by 3 or 6, giving

240 or 120, both of which numbers contain all the denomi-

nators. Widman at once takes the number 360 (Find eyn

zal dar yu du die gebrochen alle habst Vn ist 360J) without

the intervention of 720.

* Bill. Math, ser. 3, vol. xiii., p. 22.

t
' - 3S4fl. Bind unter 4 Personen so zu teilen, dass A § nnd 6 fl., B % und Sfl..

C '; nnd 10fl., I) | und 6 fl. erhait. Man sucht den Hauptnenner 720, die Hiilfte

davon ist 300; 2 hiervon ist 240, 6 addiert gibt 246. Soviet Teile bekomnit A
;

fur B, C, B findot man 224, 310, 321 Teile. Nach diesen Veshaltniszahlen wird

daiin die Teilung der Summe vorgenotnmen."

% Huswirt (Enchiridion, 1501) gives this question (on D iii) with the same
numbers as in the Alg. Rat. and in Widman, and he follows the former in first

taking the number 720 and then halvingit (qre numerum...in quo oes hos denoitores

habere possis. et est 720 q media, et relictu erit nuei 9 qsit scz 300).

A similar question in which the fractions are the same is given by Tonstall

(' De art..- svppvtandi libri qvattvor", London, 1622), but he takes the leastcommon
multiple of the denominators, viz. 120. '1 his question (on I' I) is to divide the

sum of 600 aurei among four persons so that they have '* and 9, £ and 8, £ and 7,

I .iiid 0. His direction is "In primis minimus Humerus, qui omnes has denonri-

liationes capiat : inquirendus est. Is autcm est centu et uiginti."

Question's of this type have been referred to in this paper in §27, p. 19 (text

and note , §51, p 38 (text and note), §62, p. la. In the question from .the LUium
referred to in the note on p. 19 the product of the denominators 2, 3, 6, viz. 30 is

alno the least common multiple. In the other questions in i'aciolo, Rudolff, and
I better mode of solution is adopted.
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Widman occasionally gives trivial or ambiguous questions,

but lie does not indulge to any considerable extent in the

enigmata or puzzle questions winch were popular at the time

and afterwards. One question of this kind which may be

noticed is that of the three women with 10, 30, and 50 eggs,

who sell them at the same price and bring back the same
money. This is an old question which occurs in the early

manuscripts, and, although Widman gives it in a confused

form, he seems to have made an independent examination of

the arithmetical principles on which it depends.*

The headings in Widman s Rechenung, § 187.

§187. Widman often gives a heading to a rule, as iu

the case of the Regula lucri and Regula excessus already

mentioned! (§§ 180—182). The rule itself is followed by one

or more examples. Frequently the heading has no obvious

connection with the subject of the rule, which is itself without

meaning, until an example shows the kind of problem to

which it is to be applied. Widman also very often supplies

headings to the separate examples or questions, which consist

of the name of the article to which the question relates, suck

as figs, soap, aniseed, cloves, etc., or of some word or words

which occur in the statement of the question, such as 'Schucli',

' Hering ', < Wol Tuch ',
' Schoff Esel Ochsen ', etc.* It seems

to me that Widinan's intention in giving names as headings

to the rules, and headings to the examples and questions,

was merely to break up the text so that the eye could more
readily separate the different rules, examples, and problems.

This view is confirmed by such headings as Regula pulchra,

Regula plurima, Regula bona, and we may suppose that in

these cases Widman was unable to find a more suitable title.

The questions which were to receive names seem to have

been rather arbitrarily selected, and certain types for which a

name would have been convenient have not been provided

with a heading; for example, there is no name lor the class

which may be represented by the question of the cask with

three taps, the times in which each separately could empty it

* I defer the discussion of this question and of Widinan's treatment of it to

another paper.

t 'these liegulse are: Regula inventionis, fusti, transversa, ligar, positionis,

equalitatis, lcgis, augmenti, augmenti + decrement), sententiarum, Buppositionis,

residui, excessus, collectionis, quadrata, cubica, reciprocationis, lucii, pagaraenti,
alligationis, falsi; also regula pulchra, which occurs five times, regula plurima,
and regula bona

X Including the regulae, but excluding the heading Proba, there are about HO
headings.
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being given, and the time in wliicli all three running together

could empty it being required. Other questions of this class

rehite to three mills grinding corn ; a lion, wolf, and dog eating

a sheep ; and a ship with three sails. These four questions are

placed together in Widman (pp. 136-138'), but there is no

heading for the class, though each question has its separate

heading, ' Eyn fasz mit dreyen Czapfen ', 'Von der Mulen ',

'Leb, vvolff, hunt',* 'Schiff ' . It may be noticed that Widman
does not use the title Regula virginum or Regula coecis,

although he gives a question which belongs to this title (p. 160').

There is nothing to indicate which, if any, of the names of

rules were of Widman's invention. This may have been the

case with at least some of them, for Cantor and linger

mention only headings of chapters in the Bamberg Arithmetic

:

and there are no special names in Borgi's Opera de Arithmethica

of 1484, which is the only arithmetic of earlier date than

Widman's that I have seen. In the Liber Abbaci of Leon-
ardo Pisano the numerous headings were generally suggested

by the concrete form in which each special question or class of

questions was presented as, e.g. ' de inventione bursarum ',

' de emptione equorum inter consocios', &c. If there are

headings in the manuscripts described by Rathf and in the

Bamberg Arithmetic, it would be interesting to compare
them with those of Leonardo and Widman.

Not many of Widman's names were adopted by his successors,

though of course such names as Regula de Tri, Regida alli-

gationis, Regula falsi necessarily occur in arithmetics where

these subjects are included.

The won! minus in the Bamberg Arithmetic (1483). Widman
not the originator of questions having minus in the data,

§§ 188-194.

§ 188. It was not until after the completion of this paper

and when nearly the whole of it had been published that

I received the second edition of the first portion of Troptke's

Geschichte der elementar-mathematik%, published in 1921.

This portion, which contains 177 pages, corresponds to the

' Erster Teil. Das Rechnen ' of vol. i. of the first edition

* The 'lion, wolf, dog' question is quoted by Unger {Die Mtthudik, p. 41), who
however says ir, occurs under Regula lucri.

t Bibl. Math., ser. 8, vol. xiii., pp. 17-22; vol. xiv., pp. 244-248.

I "Geschichte der elementar-mathematik in ByBtematischer daretellung mit
beBonderei berucksichtigiing der fachwoVter von l>r. Johannes Tropfke direkLoi

der KiiBchner-oberrealschule zu Berlin erster hand rechnen zweite, veibesserte

undsehr vermehrte auflage" (Berlin and Leipzig, 1921, pp. viii+177).



+ and — and on the early German arithmeticians. 133

(1902), winch contains 120 pages. The quotations in this

edition show that at least two questions in Widman in which
— occurs were taken from the Bamberg Arithmetic, the word
minus being replaced by the sign.

§189. Under 'Die Tararechnung ' on p. 168 Tropfke,

after stating that the Arabic word tara and the Italian words

brut to and netto were not used in German mercantile com-
putations in the 15th century, proceeds "Das Bamberger
Kechcnbuch (1483) enthalt Angahen wie : lie 1 sack piper

wigt 21; ct rni'n
9
9 lb ' vnd host ye 1 lb* 8 ss minus 3 hell ' vn sol

fur den sag abschlahe 3lb' ^ was host das alles. Das Wort
minus ist hier also keinesfalfs fur unser Tara zu nelnnen ",

and he adds in a note 'Gegen Cantor, Vorlesungen 2'\ S. 224'.

He then proceeds " Minderwertige, unreine Ware, Riiekstand

nsw. wird als Jtisti (italienisch = Stengel) bezeichnet, so bei

Nelkengewiiiz vegelin, bei denen in einer Aufgabe ye 1 ct

IS lb* fusti enthalt; wahrend In'er das Pfund laitter negel/e

(reines Nelkengewurz) mit 13 Schilling 3 Heller berechnet

wird, wird diefusti m'\t 2 Schilling minus 3 Heller angeselzt.

.Eine Erklarung des Wortesfusti wird nicht gegeben. Wid-
mann behandelt solche Aufgaben in seinem Kechenbueh von

1489 in einer besonderen regvla /usti"\ Then follows the

extract from Koebel which I have quoted in § 10G (p. 74).

§ 190. The first of the questions quoted by Tropfke from
the Bamberg Arithmetic is the same as Widman's pepper

question quoted in § 16 (p. 10) ; and the second is probably

the same as Widman's first question under Ilegula fusti

quoted in §89 (p. 65), for 'ye let 13 lb fusti' is the same,

2 ss minus 3 hlr is the same, and the only difference is in the

cost of the pure cloves which in Widman is 11 ss 3 hlr and in

the Bamberg Arithmetic (as quoted by Tropfke) is 13ss 3 hlr.

Thus there are at least two questions in the Bamberg
Arithmetic in which minus is used in the data, money being

so expressed in both, and weight also in one; and these

questions were transferred by Widman to his Reehenung, the

only changes being that the word minus was replaced by the

sign — , and that he wrote 3lb + | instead of 3 lb$ (though in

the solution it is written 3lb^). Jn stating the deduction to

be made for the weight of the sack Widman follows the

Bamberg Arithmetic in the words 'sol fur den sack abschlalm'.

by Untrer

191. In § 39 (p. 27) 1 said that from the accounts given

rnger and Cantor of the Bamberg Arithmetic it did not
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seem likely tliat it contained any question in which minus or

its equivalent occurred in the data, and that as such questions

did not occur in the early Italian Arithmetics, it seemed
possible that such questions might have originated in W id-

man's desire to exhibit the uses of the signs + and — .*

This suggestion is completely negatived by the two
questions quoted by Tropfke, which show conclusively that

Widman was not the originator of such questions, and that

he transferred at least two of them from a preceding work,

merely replacing the word minus by the sign —

.

§ 192. Unger's account of the Bamberg Arithmetic is

given on pp. 37-40 of his Die Methodik, where he states the

nature of the contents of each of the 21 chapters. Cantor,

who mentions that through the kindness of Dr. linger he

has received from him a transcript of the whole bookf, also

gives an account of each of the chapters, and in describing

chapter 10, on the rule of three, he writes, " f. Anwendung
der liegeldetri in Waareneinkaufsreehnungen. Was wegen
Verpackung nicht als Waarengewicht mitzureehnen ist und
spater Tara genannt wurde, heisst bier einfach das Minns
und wird subtrahirt ".}

In the examples quoted by Tropfke minus is used in ihe

sense of 'diminished by', and the words 'fur den sag abschlahe

3 lb'
|

' show that in this case the weight of the receptacle

is not called 'das minus', and Tropfke's note 'Gegen Cantor,

Vorlesunyen 2
2

, S. 224' seems to imply that Cantor was in error

in his general statement on this point. In § 108 (p. 77) I wrote

(with reference to Cantor's statement) " Without examining the

book itself it is not possible to judge whether ' das minus ' was
used as a special term for tara, or merely meant that it was
a minus quantity and therefore to be subtracted. The latter

view would seem the more probable ". It now seems doubt-

ful whether 'das minus' is used in any question for the tara,

* " I have not seen the Bamberg Arithmetic (1483), but from the accounts of

it given by Unger and Cantor it does not seem likely that it contains any question

of this type {i.e. in which some of the data are expressed a<> one amount diminished
by another). I have found no such question in Borgi (1484) or Paciolo (1494i, so

that it is quite possible that this kind of question originated in Widnian's desire to

exhibit the uses of + and — " (§39, p. 27).

t On the book itself Unger has the note " Exemplar in Zwickau, Rathsschul-

bibliothek
;
wahrscheinlich Unicum "

( Die Methodik, p. .''•7)
: but in a note on p. 55

w (1921) edition of bis Guchichte, Tropfke siatrs that a second copy has
been found by U. Wieleitner in the Augsburg Town Library.

J Vorletnngen, vol. ii. (2nd ed.), p 224. Cantor repeats this statementon p, 231.

'•Nun ist ja richtig, dasa im Bamberger Rechenbuche (-S. 224) doe Bruttogewiclit
/imi Nettogewicute gemacht wild, indem man die Verpackung als 'das Minus'
abzieht."
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and it is very desirable that this point should be settled. If

'das minus' is not so used, it would be interesting to know
whether minus occurs at all in connection with a deduction

for the weight of the receptacle or packing.

§ 193. Tropflte's quotations from the Bamberg Arithmetic

throw further discredit on the view that the signs + and —
came from the warehouse; for, wherever these questions came
from, they did not bring with them the signs. It seems

fairly clear that the signs belonged to algebra, and that

Widman in writing his Rechenung merely applied them to

existing examples which he found suitable.

§ 194. Questions in which minus or its equivalent is used

in the data do not seem to occur in the early Italian Arithmetics,

so that they were probably of German origin. Widman
followed the Bamberg Arithmetic in giving questions of this

kind, and he was followed in this respect by his successors,

as was shown in §§ 43-63. It would be very interesting

to know if any other questions of Widman's in which the sign

— occurs were taken from the Bamberg Arithmetic, and

especially interesting to know whether the Bamberg Arith-

metic contains an example of the same kind as Widman's
fig question, or one which may have suggested it to him.

Another matter of great interest would be to trace to their

original sources questions in which minus occurs in the data by

examining with this object the Algorismus Ratisponensis and

other manuscripts from which the writer of the Bamberg
Arithmetic may have derived them.

The use of the symbols x and = in addition, subtraction,

multiplication, division, and the rule of three.

De Morgan's criticism, §§ 195-200.

§ 195. In the paper in the Camb. Phil. Trans., which has

been referred to several times (pp. 1, 9, 38, &c), De Morgan
observes that the invention of signs of operation did not

commend itself to the arithmeticians of Widman's time, and

lie comments on the slowness of growth of symbolic language

which characterised the period 1450-1550.* The case he

takes is that of the guide lines used to indicate the process of

finding a fourth proportional to three given fractious as in

2w4-G
3
A

5 - 7
' T

* Camb. Phil. Trans., vol. xi., pp. 205-206.
32 l>9 — 3

t De Morgan's example is — X ~r 7 >
wu 'cu occurs on p 78' of Widman,

and is his first use of x and =.
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where the lines show that a fourth proportional to §, \ , f is

obtained by multiplying 3, 4, 6 and 2, 5, 7. He states that

the "arithmeticians' own directive symbols never became signs

of operation, though in almost universal use for a century":

and he considers that x and = should have become separate

symbols denoting division and multiplication, i.e. that § X §
4 — 6

should have meant f divided by f,
and -_- should have

meant the product of % and £; and that in general x placed

between two quantities should have denoted that the second

should be divided by the first, and = placed between two

quantities should denote that they were to be multiplied

together.

§ 196. In the course of the preparation of this paper

I examined the uses of crossed and other indicating lines

in the different books which I consulted, and 1 had intended

to include these results (like those relating to tara and fusti]

in the present paper: but this intention was abandoned on

account of the additional space that would be required. I

will here only say that I did not find myself in agreement

with De Morgan. The guide lines were not so generally

employed in the rule of three as his statements, and the list

of authors he gives, would imply; and he ignored the tact

that the crossed lines had other uses. The cross was placed

between two fractions, as in § X f, not only when they were

the first two terms in the rule of three (so that \ was to be

divided by f) and in division, but also when the two fractions

were to be added or one was to be subtracted from the other*;

and there are cases in which § x 4 meant that % was to bo

divided by %\ in fact the cross formed of two guide lines had

a much wider meaning than a direction to divide the second

fraction by the first, and it would not have been natural to

restrict it to this purpose. Also, the guide lines being so

closely associated with the multiplication of the numbers

c

which they connected, the transition from -=_ x —, to axe

would not be so easy, as unit denominators would have to be

understood, i.e. -X-, It is a long step to pass from

a cross which, placed between two fractions, merely indicated

that, among the operations to be performed the numerator of

In thecaaeof addition or subtraction a line was often placed beneath the

cross to indicate that the denominators were also to be multiplied together.
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each was to be multiplied by the denominator of the other, to

a cross placed between two numbers which was to indicate

that the second was to be divided by the first. Even at the

present time there is no recognised sign which, placed after

a and before b, denotes the fraction — , although a-=rb and
a

a
a\b are frequently used to denote the fraction — .

Also, as in the fraction — —
, a line indicates that a and

b — d
c are to be multiplied together, it would seem natural to use

a - c to indicate that a and c are to be multiplied together

when a and c are any numbers as well as when they are both

numerators or both denominators; but, this being impracticable

owing to the other uses of — , I do not think that it would

have seemed natural to replace a - b by a = c, for if in — -

the denominators were omitted so also would be the line

connecting them.

§ 197. In some works the cross was used in addition,

subtraction, and division of fractions, but not in the rule of

three: in others it was used in the rule of three only, and
sometimes it was used in all these processes. In division the

divisor was generally placed first, but Gielis vander Hoecke
in his Aritkmetica* placed the dividend first, as in 'f x|- \\
tacit If ', although he uses x in the rule of three as in

'- Y - ~ - facit *IV5*6-9 taClt 2« '

Apianns in his Rechnung of 1527f separated the terms of a
proportion by lines as in '|-f — §', and his direction to

obtain the fourth term is ' multiply the middle and last terms
and divide by the first', which in this case he expresses by
2 — 3

' - _ - ft. § tayl in die erst | x J2 ft. f fl ', so here the dividend

is to the left of the cross. Similarly in the case of the pro-

portion «l£0-3iyu -^2' the working is ' VL4p_2 x loo
ft<

* I quote from the Antwerp edition of 1544, the title of which begins "In
Arithmetica, ecu sonderlinge excellet boech leerende . . .

." The quotations are
from pp. 29' and 32'. There was an earlier edition of 1537, of which the title page
is reproduced in I'ara Arithmetica, p. 184. Vander Hoecke uses x in the addition,
subtraction, and division of fractions and = in the multiplication and in the rule
of three. He does not insert the horizontal line below the cross in addition and
subtraction.

t 'the title is given on p. 32. The quotations are from F viii', G i, E viii'

and F i.
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fi 174^|'. But lie tlien points out that the better method
is to take the numerator of the third term as a new third

term, to multiply together the denominators of the second

and third terms and the numerator of the first for a new first

term, and to multiply the denominator of the first term and

the numerator of the second term for a new second term,

thus obtaining three terms which are free from fractions.

This he illustrates by the diagram

1 V 2. 3
2 A

1 — 4>

where the guide lines indicate the formation of the three

terms 28, 4, 3.

Though Apianus did not actually use the cross in addition,

subtraction, or division of fractions, he symbolised the three

processes by X
;

X
:
Xx' and multiplication by =. He uses the

double cross for division because he places the dividend first

and has to invert the resulting fraction. This appears from

his rule which is ' >Setz den Tailer zii der rechten handt, vnd
inultiplicir (lurch kreutz', and from his example 'A Tail in

§ facit 4
;'. Thus both of these writers were irregular in their

use of the cross, and it is clear that they regarded it as merely
indicating the pairs of numbers which were to be multiplied.

Tonstall in his De arte swpputandi (London, 1522) lays stress

on the fact that it is immaterial on which side of the cross

the divisor is placed, though he himself prefers to place it

first, as he does so in the division of numbers.*

Oardanof uses the cross in addition and subtraction ot

fractions, the arms of the cross as usual indicating the numbers
which are to be multiplied together: but in the ride of false

the arms indicate subtraction or addition. He places the

first error under the first position, and the second error in

line with the first position and over the second position, and
connects the positions and the errors by a cross: thus the

two errors are at the ends of an arm, which indicates that

the smaller is to be subtracted from the larger (or added if of

opposite signs) and similarly for the errors: these differences

(or sums) are the first two terms of a proportion of which

the error is the third term, the result being the correction to

be applied to the corresponding position.

* His words (on 8 4') are " Sunt : qui iubent in minutija diaidendia diuieorem
it. dextra poni : quasi id magni referat qui cur id fieri sic uelint : nihil uideo

:

qnando illi ip*i praacipiunt fragment! diuidendi numeratorem in diuiaoria denomi-
natorem, contraque diuidendi denominatorem in numeratorem diuiaoria dura.

Quod prasceptum ni quia seruet : nihil oninino refert : ab utia parte diuiaor

Bteterit . .
."

t " tJieronimi 0. Cardani...practice arithmetics ..." (Milan, 1539). The rule of

falsa is explained in chapter xlvii.
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§198. De Morgan stated that the "lines guided the

details of these operations [division and multiplication], hut

never symbolised the operations themselves".* The more
correct statement, it seems to me, would he that in the treat-

ment of fractions a single line 'guided the details' of the

operation of multiplication and in fact symbolised the operation

itself, and for this reason the crossed lines and parallel lines

each symbolised two multiplications. Thus — x -* denoted
J r

b a
the formation of ad, be without regard to whether they were

, , . , . ad be ad+hc ad - be .

to be combined in — , or —r , or —z—,— , or—j—.— . omce
be ad bd bd

a — c, occurring in a fraction, symbolises the product ac,

a — c ... ac— — symbolises -rT .

b — d bd

when x and = were used in connection with fractions the

extension of these marks to indicate processes applied to

simple numbers would have been difficult; and as we have
seen even in fractions the cross was used in addition and
subtraction as well as in division, so that it would have been

impracticable to apply it to division only.

It may be mentioned that though Tartagliaj" uses x and

,

"
, ,. , . 17%, 31 — 108 .= in the rule or three as in — X — —, these fractions

3
/x

3 - 8
'

being the first three terms of a proportion, he writes, in division

of fractions, 'a partir per ;. X ~ — \ where the horizontal

lines merely connect the products with the factors.^

Although single lines were sometimes used to separate the

terms in <t proportion, and to connect or separate numbers in

other ways, their most usual purpose was to indicate multi-

plication, and it seems quite possible that — might have

* Loc. cit., p. 20fi.

t "La prima parte del general trattato di nvtneri . .
." {Venice, 155G). The

quotations are from pp. 146', 117.

X In division of fractions the rule ' Invert the divisor and proceed as in multi-
plication' is, I think, due to Stifel, who gives it in his Arithmeticu Integra (1644)
and seems to claim it as his own. Under ' De Divisions Minutiarum' he writes
"Ego Diuisionis regulam reduco ad regulam Multiplications Minutiarum, hoc
modo : Diuisoris terminos commnto, id est, nnmeratorem pono sub uirgula, it

denominatorem Bnpra uirgulam pono. Hoc facto, nihil aliud restat, nisi ui opereris

iuxta regulam M ultiplicationis Bupei ius datam "
(p. 6). He gives this rule also in

his Deutsche Arithmeticu
1 1546) ; and, in bis edition of Kudolffs Cost (1663), after

saying that Rudolff's rnle for divioion [to reduce the fractions to a

denominator and then divide one numerator l>y the other] is 'wol. kunstlich
gemacht,' he expresses his preference for disown rule" Aberdoch istmeyn Hegel vom
diuidiren der briich, viel gebreuchlicher (wie raich bediinckl |

deii des Chratoffs" :

and then he explains the rule (Die Cots, p. 25). It. is to be remembered, however,
that Stifel used 'dieser meinev Zeichen' in a case where I do not think he meant
to claim the signs as his own. bee §o'J (p, 12).
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become the sign for multiplication (had the need of such

a sign been felt) if it had not been already appropriated tor

subtraction.

§ 199. Widman's Rechenulig was the earliest book in

which Ue Morgan had met with the guide lines x and =
in the rule of three. Widman uses them rive times, but he

does not use the cross in addition, subtraction, or division,

nor the parallel lines in multiplication: he regards them how-

ever as indicating division and multiplication, for, after his

first use of them to connect the three terms of a proportion,

lie gives the direction 'multiply the middle by the last and

divide the product by the first'.

Borgi (1484) used the guide lines not only in the rule of

three, but also in the four fundamental rules, placing also a

horizontal line below the cross in addition and Subtraction.

His use of lines is restricted to indicating that two numbers

are to be multiplied together, e.g. when the three terms of

a proposition are l
£, %5

,
4
5
B he does not write

16 v 45- 48

J A T- 5

to indicate that 3, 15, 48 are to be multiplied together, and

also 16, 4, 5; but he represents the procedure by

320 135\
16 45 48

20

where the lines indicate that 3 is to be multiplied by 45,

giving 135, which is to be multiplied by 48; and that 5 is

to be multiplied by 4, giving 20, which is to be multiplied by

16, giving 320.*

Widman seems to have been the first to use crosses in the

chain rule.

§ 200. So far from there having been a slowness of

growth in symholic language between 1450 and 1550, it

seems to me that this period is remarkable for the invention

of symbols. The cossic signs, the signs -f and —
,
and the

sign for square root all came into use in Germany, and

probably originated there, during this period. Both Rudolflf's

Goss of 1525 and Stifel's Arithmetical Integra of 1544 show

a considerable amoun t of symbolism.
* The cross was used for convenience of printing (as 1 have used it above and,

aa in the pit-sent case, it frequently happens that it cannot be so placed thai both

arms point accurately in the right directions. To obviate this Borgi sometimes

the Beeond and third fractions, thereby dislocating to some extent the

, arrangement. Borgi always begins his multiplications from the extreme

denominators.
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Note on the Contents of the Paper.

It may be useful to anyone who refers to tliis paper to

state that Part I. (pp. 1-27) relates to Widman's Eechenung

(1489), that the greater part of Part III. (viz. pp. 108-140)

relates either to Widman's fiechemuig or to manuscripts that

preceded it, while the whole of Part II. (pp. 27—107) relates

to works published subsequently to Widman's Rechenung.

The signs -4- and — and the words plus and minus form

the principal subject of Parts I. and III. and of considerable

portions of Part 11. (pp. 33-47, 58-63).

The other subjects to which Part II. relates are: an

examination of the questions contained in the various books

in which the sign — or an equivalent word occurs in the data

(pp. 47—58, 60), the occurrence of the words fasti and tara in

German books (pp. 63—77, 89—90), the use of these words by
Italian writers (pp. 77—89), and the supposed mention of signs

of addition and diminution by Peurbach (pp. 90-107).

The concluding portion of Part III. relates to some
recently published extracts from the Bamberg Arithmetic

(pp. 132—135), and to the use of the symbols x and = in the

rule of three (pp. 135-140).

Widman's use of the cossic notation is described on pp.
22-27: and the Latin Algebra in the Dresden Codex, from

which he probably derived + and — , is referred to in various

sections from p. 108 to p. 121.
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Meizdorf 112?*

Maria 56, 57

Nicolini 107
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Tagliente, G. A. 81m, 84
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Vadianus 93. 106
Vietor 104, 105, 106, 10<5ra

VoejHin 95, 98, 98m, 102m, 104, 10l«, 107
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Wagner 3
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LIST OF BOOKS REFERRED TO.

(The page is where a fuller title is given).

Anonymous Bamberg Arithmetic, 1483

„ Trevu-o Arithmetic, 1478 .

„ Ayithmetiee Liliuni, 1510 (?)

Albert New Rechenbiichlein, 1511

Apfaltrei Scriptores Univ. Viennensis, 1740
Apianus Newe Rechnung, 1527
Aschbach Geschiclite der Wiener Universilat, 1S65

Berlet Riese's Coss of 1521, 1892
Boncompagni ^critti di Leonardo Pisano, 1857

Borgi La nobel opera de aritlimetbica, 1484
Bo.-chensteyn New geordnet Iteclien biecblin, 1514

Calandri De arimetbrica opusculiim. 1491

Cantor Vorlesungen fiber Geschiclite der Jl

Cardano Practica arithmetics, 1539 .

Cataneo Libro d'albaco, 1546
Chasles Apergu histoiique, 1875

Denis Wiens Buchdruckergeschicht. 17is2

Drobisch De Widmanni compendio arithmeticse, 1840

Essling Li vies a figures Venitiens, 1909

Feliciano Libro di Arithmetica, 1525

Gerhardt Geschiclite der Mathematik, 1877 .

Ghaligai Pratica d'aritlimetica, 1548
Giammateus New kunstlich Buech, 1518 and 1521

,,
Behend unnd khunstlich Bediming, 1521

llain Repert. Bibl , 1826-38
Ralliwell Rara Arithmetica, 1839

lloecke Arithmetica, 1544
Huswirt Enchiridion, 1501

Hutum Phil, and Math. Die, 1815 .

Joeher Gelehrten-Lexico, 1784

Kastner Geschiclite der Mathematik, 1796

Kliauiz Geschiclite der Oesterreiehischen Gelehrten, 1

Klugel Wbrterbnch, 1831

Koebel New geordnet Rechen biecblin, 1514

„ Neiiw Eecheiibiichlein, 1517

„ Neiiw Rechenbiichlin, 1525

„ Zwey Rechenbiichlein, 1537-38

Lacher Al^orithmus, 1506-10
Leonardo Liber Abbaci
Libri Histoire des sciences mathematiques, 1840

„ Sale Catalogue, 1861

Paciolo Summa de Arithmetica, 1494

Peer New guet Rechenbiichlein, 1527

Pellos La an. de aiithnieticha. 1 192

Peurbach Algorithuius, Vienna, c. 15n0

?

„ ,,
Leipzig. 1603

„ „ Vie i, 1511

„ „ Nuremberg, 1513

,, ,, Tannstetter'ed., 1515 .

„ „ Wittenberg, 1534

„ Elements Arithmetical, Wittenberg, 1536



+ and — and on the early German arithmeticians.

Reisch Margarita Philosophica, 1503
Riese Manuscript Algebra (Die Coss), 1524

„ Rechenung auffi der Linihen nnd Federn, 1525

„ Rechenung nach der Lenge, 1550
Rudolff Rehend vnnd Hubsch Rechnung (Algebra), 1525

„ Kunstliche Rechnung (Arithmetic), 1526

„ Exempel Biiclilin, 15o0

Pacrobosco
Sfortunati
Smith, D. E.
Spenlin
Stifel

Tannstetter
Tartaglia
Tonatall

Tropfke

Unger

"Voegelin

Wappler
W idman
Wimpina

Algorismus (Halliwell'sed.), 1839 .

Nuove lume libra di arithmetica, 153-1

Rara Arithmetica, 1908 .

Arithmetica, 1546

Arithmetica Integra, 1544
Deutsche Arithmetica, 1545

Die Coss Christoffs Rudolffs, 1553 .

Libra de abaco, 1515
Opera die insegna Ragione de Mercantia, 1525

Opera nova che insegna..., 1527

Tabula? Rclypsium, 1514 .

Trattato di numeri et misure, 1556 .

De arte supputandi, 1552 .

Geschichte der elementar-matliematik, 1902 .

„ „ „ 2nd ed., 1921

Die Methodik der praktischen Arithmetik, 1888

Elementa Geonietriae", 1536

Programm, 1887 . . '

Rechenung, 1489 ,

Scriptoruni insignium centuria, 1839
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33
31
31
51

35»

80«
83«
SIM

105»*

86»
130?/.

2n
132*

98«

108n
5

112?*

PAPERS IN PERIODICAL PUBLICATIONS REFERRED TO.

TAGS
Abhandlungen zur Gescliichte der Matliematik : . 110?*

Arcliiv der Math, and Phvs. (Grunert) :

vol. iii. (1843), p. 291 (Gerhaidt) . . 1«

Athenaeum for Oct. 29, 1864, p. 565 (De Morgan)

.

21?i

Atti dell' Accad. Pontif.de' nuovi Lincei

:

vol. xvi. (1863), pp. 139-228 (Boncompagni) . 82?t

Bibliotheca Mathematica

:

ser. 3, vol. iv. (1903), p. 90 (Enestrom) . 113?t

„ vol. viii. (1907-08), pp. 195-200 (Ene-
stiilm) . . . 113?!, 124??, 128«

„ vol. ix. (1908-09), pp. 155-158 (Ene-
Btrom) . . . 119, 119m

„ vol. x. (1910), pp 182-183 (Enestrom) 119n, I23n

„ vol. xiii. (1 912 13), pp L7-22 (Rath)

.

125n, 129», 130», 132n
„ vol. xiv. (1913-14), pp. 241-218 (Rath) 129k, 132m

Bullettino di Bihliografia e di storia :

vol. vii. (1874), p. 485 (Boncompagni) . 86??

vol. ix. (1876), pp. 188-210 (Boncompagni) . 5??, 7?t, 8;?, 112?»

Camb. Phil. Trans. :

vol. xi. (1871), pp. 203-212 (De Morgan) . In, fin.7n.9»,lC«.20n,38n,39a
135, 135??, 139??
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Centralblatt fur Bibliothekswesen :

vol. xv. (1898), pp. 2-41—2G0 (Bunch)
vol. xvi. (1899), pp. 286-305 (Curtze)

Monatsberichte der Berl. Akad.
fur 18^7, pp. 41-54 (Gerbardt)

„ 1870, pp. 141-147 (Gerbardt) .

Zeitscbvift fiir Math, und Phys.

:

vol. ii. (1857), p. 366 (Cantor) . . In, 43«
vol. xxii. (1877), supp., p. 11 (Treutlein) . 102n

vol. xxiv. (1879), supp., pp. 13-32 (Treutlein) 9«, 25*,

vol. xxxiv. (1889), snpp., pp. 167-169 (Wap
pier)

vol. xl. (1895), supp., pp. 31-74 (Cnrtze)

57«
I02n, 112«, 129/*

9*
9n, 102n. 114?*

30?!, 102«

11 hi, 11», 118

63n, 114, 114?*, 118«, 127, 128»,

129n

vol. xliv. (1899), supp. vol., pp. 539-554
(Wappler) .

vol. xlv. (1900), Hist.-litt. Abt., pp. 7-9
(Wappler)....

vol. xlv. (1900), Hist.-litt. Abt., pp. 47-56
(Wappler)....

108n, 110, 116, 116«, I18n

112«

116, 116»

MANUSCRIPTS REFERRED TO.

Algorismus Ratisponensis

Codex Dresd. C 80 .

German Algebra in C
Latin Algebra in C 80

Otber manuscripts in C 80

Codex Lips. 1470
Lat. Monacli. 14783

ii ,, » 14908 •

19091 .

„ Vindob. 3029

„ 5277
Munich manuscript of loth century

Stuttgart A Igorithmus

PAGU
125, 126, 129, 129», 130, 130»,

135
108-126
108, 109, 110, 113, 116, 125

108, 109, 110, 11 On, 111, Uln,
112, 112n, 113, 113n, 1)4,

116, 117, 118, 118n, 119?*,

120, 121, 123, 123n, 124,

124n, 125, 126, 127, 143

110, 111, 111?*, 112n, 116, 118

I19n

111, 112/t

129n
114, 118n, 127, 129, 120?*

102n
129, 130

98n, 102n
104, 104?»

1 29n

ERRATA.

p. 5, 1. 7 from bottom, for 240 read 210

p. 17, 1. 9,/or 18 read 15 ; 1. 12,/or 8 read 81

p. 28, 1. 13,/or 1526 read 1527

p 36, 1. 17,Jor bescreib read beschreib

p. 37, 1. 8 from bottom, for §61 read §§51-52
p. 42, 1. 7, for 1543 read 1545

p. 43, 1. 22, for § s6 read § 85 ; 1. 29,/or § 61 read §§61-62

p. 47, last line,Jor §69 read §70.

p. 72, 1. \7,for tara fur read thara fiir

p. 77, 1. 6, insert * after Cantor's name ; 1. 6 from bottom, for Cantor read

Vorletungen

p. 77, 1. 2bJor §§ 109-1 12 read §§ 109-123.
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ON A NEW CASE OF THE CONGRUENCE
2
P_I = 1 (mod/).

By Dr. N. G. W. H. Beeger.

In 1913 Mr. W. Meissner discovered the only prime <2000
which satisfies this congruence, i.e. the number p= 1093.*

I now have found that the only prime number between

2000 and 3700, that satisfies the congruence, is jd = 3511.

We have^= 3511 = l + 2.3
3
.5.13 and 7p = 3.2

l3 +l. Hence

3.2
13 = -l + 7^ (mod/),

3
i»

2
i75s = _ x + 945^ (

raod/) (1).

Now we find by calculation

3
,a = 2021786 (mod/),

and also the residues of 3
30

, 3
60

, 3
120

, 3
135

. So we find

3
135 = -1 + 945^) (mod/) (2).

From (1) and (2) it follows that

2
1755 = 1 (mod/).

Here follows a table of the least positive residues of the

quotient

- 2? ~ 1
/ i nr = (mod^j,

-1
v is called the residue-wliere £ is the least exponent,

index. »

In the calculation of the table I used the table of residue-

indices of Lt.-Col. A. Cunningham.

|

V
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CORRESPONDENCES BETWEEN THREE-
DIMENSIONAL AND FOUR-DIMENSIONAL

POTENTIAL PROBLEMS.

By Dr. H. Bateman.

§ 1. It is known that there are certain transformations of

co-ordinates which transform a potential problem in a three-

dimensional space S
3

into a potential problem in a four-

dimensional space S
t

. At first sight it may be thought that

nothing could be gained by such a transformation, but it

happens that in some cases the boundary B.
%

in 8
t
has a greater

degree of symmetry than the corresponding boundary B
t

in

S
3 , and there is more hope of a solution of the problem being

"obtained.

Let us consider the transformation*

X= x'+s*-y'-z% Y=2(xy-zs), Z=2{xz+ys)...{\).

If V=F(X, Y, Z)=/{x, y, z, »), we have

ox dy oz da

where r
9 = x' + y~ + z

7 + s' = */{X* + Y 3 + Z !

) = B.

A three-dimensional potential function satisfying the poten-

tial equation A F=0 is thus transformed into a four-dimensional

potential function satisfying the equation D V= 0. The
equation AAF=0 occurring in the theory of elasticity is,

however, transformed into d()''"'dF) = 0, so that an elastic

problem in 8
t
does not correspond to a simple elastic problem

in S
t

. The equation A V-\- k'V=0, occurring in the theory of

vibrations, is transformed into D V+ — V=Q, and again there

is a loss of simplicity.

* Camb. Phil. Tinvs., vol. xxi. (MO), p. 257; /Yoc. Roy. Soc. Edinburgh,
vol. xxxvi. (l'JIT), p. 102.
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It V nn<\ Ware any two functions of X, Y, and Z with
continuous partial derivatives, they may be expressed as
functions of x, y, z and s by means of equations (1), and we
obtain the relation

dVdW
+
dVdW dVdW dVdW

dx dx dy dy dz fa cs ds

= a >(<!XdW dV dW dVdW\
' \dX dX + BY dY +

dZ dZ )
{3) -

A corresponding relation is obtained by putting V= W.
?) V

These relations tell us that if «=-_ denotes the partial de-

rivative of Fin a direction normal to a surface W= constant

dV
in aS

3 , and if ^- denotes the partial derivative of V in a

direction normal to the corresponding variety W— constant
in S

t
, then

& =2rm «•

Thus, if we know the value of either V or —,, over the
dN

surface W= constant in &, we also know the value of either

dVV ov -^- over the corresponding variety W— constant in S
4

.

This means that two important types of potential problems
are transformed into similar potential problems in the higher
space.

Since y, = — , a hydrodynamical source or electric pole at

the origin of co-ordinates in #
3

corresponds to a hydro-
dynamical source or electric pole at the origin of co-ordinates

in S
4
.

To study the geometrical relations it is convenient to write

x = r cosO costp, y = rs\ndcosip\

s = rcos#sin0, z = r sin sin
\f>

I (
5 )>

»-COS0 = £, rm\6 = r] )

then

X=r9
cOB20, F= r sin 20 cos (0 + */,), Z=r* sin 20 s\n ($ + $),

X=?- v\ V( YUZ>)=2£V , R. f" + v\
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A point P with co-ordinates (X, Y, -Z") in tlie space S
3

corresponds to a set of points p lying on a circle (p) in the

space S
t

. To see this we notice that the quantities r, and

(f}
+ \^ = a. are constant for the points p, and so these points lie

on the hypersphere r
a = constant and also on the plane whose

equations are

x sin eosa + s sin sina = y cos0
]

. .

x sin# sin a — s sin cosa = s cos# )

The circle (p) is thus of radius r, and it has its centre at

the origin.

Let us now calculate the integral of the elementary four-

dimensional potential function

..(7)
(x - x

oy +{tj- yQ )

2

+ {z - z f +{s- s
nf

round the circle (;> ) corresponding to the point (A
r

, Y , Z ).

Writing

x = r cos 6
n
cos <p , y = r

Q
si n

Q
cos^ n

s
n
= r cos

U
si n </>„, s = r

Q
si

u

n
si n i/,, I (

8
)

i

multiplying the ahove expression by r
a
d<j> and integrating,

keeping r ,
O
and a constant, we obtain

.(9).
^n

[{x-x y+(Y-Y
n
y+(z-z )j'~

A uniform electric charge round the circle (pQ)
thus corre-

sponds to an electric pole at the point (X , Y , Z ). Combining
tliis result with that embodied in formula (4), we see that the

lotal electric charge on a surface in S
3

is proportional to the

total electric charge on the corresponding variety in Sr
There is equality between the two electric charges when we
adopt a suitable unit of electric charge in S

A
.

A surface of revolution round the axis of X in S
3
may be

represented by an equation of type

F(A\B) = (10),

and is seen to correspond to a variety of revolution of type

F{?-n\ f+rt-o («)•
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If we write Tl = \/(Y 3+Zs

), it is easy to see that the

(X, n) plane is mapped conformally on the (f, 77) plane by
the parabolic substitution

X=fW, n = 2^ (12).

The angles which a curve in the (£, 77) plane makes with

the axes of f and 77 are consequently equal to the angles which
the corresponding curve in the [X, U) plane makes with the

axis of X.
A diamond or rhombus in the (£, 77) plane, with the axes

of £ and 77 as diagonals, corresponds to a figure in the (A
7
", Tl)

plane consisting of two parabolic arcs meeting on the uxis of

X at an obtuse angle at one vertex and at an acute angle at

the other, the two angles being supplementary. After a

revolution about the axis of X this figure gives a balloon-

shaped figure.

A balloon-shaped figure may also be obtained by taking

as the figure in the (£, 77) plane two circular arcs meeting in

a small acute angle on the axis of £. In this case the nose of

the balloon is flat instead of being pointed.

The hydrodynamieal problems of irrotational motion asso-

ciated with a dirigible balloon may then be transformed into

the four-dimensional hydrodynamieal problems associated with

the figure formed by the double revolution of either a rhombus
or two circular arcs.

In dealing with hydrodynamieal problems associated with

a surface of revolution, it is sometimes convenient to introduce

a current function 12 connected with the velocity potential 12

by relations of type

1 ci r» 3T7 1 cs r>

(13).

When Fand 12 are considered as functions of £ and 77,

the corresponding relations are

This transformation is useful for problems in which there

is complete symmetry, the differential equations satisfied by

V and £2 are then

3'F d'V 18F
ai^arr + nan =0 ^

dV 1 8X2
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B
2

, 8
!

1 3fl n

Mf +
3n« "n an

=
<
16

>«

a
3 F i ar a

3 r iar
aF

+^ + e?%^ = (17) '

BT2 1 ?il d'il 1 312

aF~£ a|
+ a?~^ (18)#

If F= -

Vi(A'-a)
2 +rr}'

we,iave ° = vp^Vrr}'
and the corresponding functions in S

t
are

F- I

Other pairs of functions may be derived from these by
expanding V and 12 in ascending powers of a and taking the

coefficients of a
n

.

The case in which a potential function is of form

W(X, Il)cosa or W^—rf, 2^rj) cos
{<t>
+ 4>) may be treated

by means of the well-known theorem that if V[X, U) is a

dV

.

solution of AV=0, then W= — is a solution of
dU.

ffW WW 1 ?W 1

8Z'
+

3n,+ n an n"
IK ~°

{ } '

and TF"(X, n) cosa is consequently a potential function of the

required type. The theorem derived from this is that if

V'^— rj
1

, 2tjr)) is a solution of V— 0, then the function V
satisfies (17), and the function

w 1 / dV
. u dv-

is a solution ot

(?%<) -«

d'W l dW _ 1

Tr
?HV l dW_ 1

and consequently H'cos^ + t/-) is a four-dimensional potential

function. The symmetrical functions and the functions just
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considered are those wliicli nre needed for the solution of tlie

hydrodynamical problems arising when a solid moves steadily

through a fluid with motions of translation and rotation. It

may be noticed also that the differential equation (21) is

satisfied by an expression of type

rfVw-m <**>•

where V is a solution of (17). This provides us with another

method of deriving a potential function of type TFcos(^) + \p)

from a symmetrical potential function V.

Our transformation can also be used to obtain a corre-

spondence between solutions of Laplace's equation by making

use of the fact that when V satisfies dF=0, the function

Vds '. (23)

is generally a solution of

Let us consider the case when V=F(X, U) depends only

on Xand n. Writing p'==ys+z\ we have

U=f F{x 2+s2-p\ 2ps/^
,+ s

t
))ds (25).

J -00

In particular we have a potential function

,. , ,
. n i.3...2/i-i TT

which, when p = 0, reduces to -rrfi.-r-:—~— • Hence we
r

' x 2.4...2u

may deduce the relation

r'
nl

2.4. ..2n
JnK '

_ f ds P (
*'+°'-P'\

[21)
"J-ooCsc'+a'+pT

1 "W'+s'+pV {
'

where a; = rcos#, p = r sin 6.
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Another correspondence between three and four-dimensional

potential problems may be based on the transformation

x=— , r=-£-, z=— (28),
s + r

'

s + r Mr
where r

2 = a;* + s" + y + z
2

.

In this case a point P (X, 7, Z) in #
a
corresponds to

points j9 I)'i"g on a line p in the space #
4
and passing through

the origin. A surface in S
3
thus corresponds to a conical

variety in S
4

.

§ 2. As a first example of the use of our first transfor-

mation let us derive the potential function which is constant

over the spheroid

E+X R-X
-^r + ~w - 1 (29)

from t he potential function which is constant over the four-

dimensional ellipsoidal variety of revolution

(30).

a

jr*4 s' V+z' „
«.e. —— + ,, = 1

a o

Now in the case of the four-dimensional ellipsoid

?+£+?+£-» (
3 '),

a o c (j

the potential function which is constant over the ellipsoid and

zero at infinity is given by the formula

V= C (* — (3>)

where Cis a constant and X is the positive root of the equation

_^L + _£_ + _i_ + __i! 1 (33).

Hence in our case the desired potential function is given

by the formula

„ n r dd C
t

a'+\ , ,
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where \ is defined by the equation

+^ = l (35),
dJ + X b'-\- X

or by the equivalent equation

B + X B-X
>(3

2{cf+\) 2{b'+\)
K

As A, varies this equation represents a series of confocal

prolate spheroids, the semi-axes A and B of the typical

spheroid being

A = \ + ±{a'-b*), B=^{(\-\-a'){\ + b-')}....(Z7).

We find that the required root of equation (36) is

X= l-[(a'-&a-X)*+n']*-i(aB +&2 -iZ) (38).

Hence

a'+\ = ±{R + R'+2c), 5
2 +\ = i(£ + #-2c)...(39),

where R and R' denote the distances of a point P from the

foci 0, and 0' of the spheroid and 2c denotes the distance

between the foci. We thus obtain the usual formula

R + R'+25
V=zC]oS

jl + B'-2c
(40)

'

where C is a constant which may be identified with ej2c,

where e is the total charge on the spheroid. Since

R'-R' 2=icX,

we may in fact write

R + fi'4 2c _ 2X+R-R' _ X+R+ c

R \ B'- 2c
~ 2X-R + R'~ X+R'-c

""
[

''

and the above formula becomes identical with the well-known

formula* for the potential of a uniform line charge of total

magnitude e and extending from to 0'

.

As a second example let us consider the four-dimensional

potential function which is constant over the "ring" whose

equation is

[(g-*)'+y'-fl [(£ + *)' + y-fl-O (42).

* Cf. AbraUam-Foppl, Theorie der Electricitdt, Bd. I.
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To find this function we shall find it convenient to use

toroidal co-ordinates a,
x->

defined by the equations*

asinhcr asinv
, x

£ = - , V =—i

— (43).
cosher- cos x cosher — cos^;

If V= (cosh a — cos x) U, where U depends only on a and

X, it is found that U satisfies the equation

c^
+ cotW

87
+
a?-

fcot^ =0 (44) '

and that there are particular solutions of types

P
n
(cosher) P

n
cos x, Qn

(cosh a) P
n
(cos x) ....(45).

A convenient expression for a constant potential function

in terms of special functions is obtained by using Heine's

expansion. We have in fact

1 = (cosher- cos x) S (2/1 + 1) Qn
(cosher) P

n
(cos ^)...(46).

n=0

A potential function which agrees in value with this over

the loci cr = cr
n
and is zero at infinity is given by the formula

F= (cosher -cos*) 2 (2n+ l) ^°J*°\ Qn (cosh tr.)

P

n (cosX)

(47).

To verify that this expression satisfies the requirements we
must first note the geometrical meanings of a and x-

Let A and A' be the points whose (f, rj) co-ordinates are

(a, 0), (—a, 0) respectively, and let P be a point with co-

ordinates (£, 77), then

PA' A ,

jj=e% APA= X -

At infinity we have cr = 0, % = 0, coshcr=l, cos^=l. The
expression for Fwill clearly be zero if the series converges
to a finite value when a = 0. Now the series is known to

converge when a = er
()

and P
n
(oosha) diminishes in value as cr

decreases from a
n

to zero and is positive all the time, hence

* Electrical and Optical Wave Motion, p. 104.
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each term in the series when cr = is of the same sign as the

corresponding term in the series tor cF = <r
fj

and is numerically

less. When, moreover, x = 0, all the terms in each series are

positive; hence, since the series converges when a = a
,

it

ulso converges when a = 0. In the foregoing argument we

have made use of the theorem that Pn
(eosho-) increases with <r

and is greater than 1, its value when ct = 0. This may be

seen at once by expanding the integrand in Laplace's integral

1 fr

P(cosho-) = - (cosh a- + si nh cr cos<i)V<£...(48)
" v

TT Jo

by the binomial theorem. The terms containing an odd power

of cos0 vanish on integration, while the terms containing an

even power are positive and increase with a. The fact that

Q (cosher) is positive is seen at once from the well-known

integral

$.M=^£(i-O"('-0-~™ (
49 )-

The solution of our four-dimensional potential problem

may now be used to obtain a solution of the three-dimensional

potential problem in which V is constant over the surface

(R + b*-c2y=2b 2 (R+ X) (50),

where b'
i -c2=a i

. This surface is formed by the revolution

of a limacon round its axis of symmetry. We may in tact

write

£ = 5 + ccos#, ?7 = csin#,

X=b'+ 2bc cos ^+ c"(cos
a0-sin^)= ^-c" + 2ccos0(6 + c cos 6),

n = ibc sin 6 + 2c" sin 6 cos 6 = 2c sin 6 [b + c cos 6).

Referred to a pole at the point {b
?—c\ 0) the polar equation

of the meridional curve in the (X, U) plane is

p = 2c (& + ccos0),

and this represents a limacon. We can thus find a potential

function which is constant over the surface formed by the

revolution of a limacon round its axis of symmetry.

This result is not new, for the limacon may be inverted

into a spheroid, and the inverse problem may then be treated

with the aid of spheroidal harmonics.
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AN ENDLESS SUCCESSION OF THEOREMS AS
TO TWO COMPLETE INSCRIBED POLYGONS
WITH EQUALLY NUMEROUS VERTICES.

By E. B. Elliott.

1. When I encountered tlietn I did not recognize the two
following simple theorems and (iv) and (v) below as familiar.

It does not appear that well-known facts of Projective Geometry
readily afford them; and the application of direct analytical

methods to their establishment is more tedious than I should

have expected.

(i) If ABC, A'B'C are two triangles inscribed in the same
conic, the points in which AA, BB', GC respective!)/ meet the

lines connecting the points of intersection {BB', G(J) and
{BC, CB), the points of intersection {CG, AA') and (CA\
AC), and the points of intersection {AA', BB') and (AB', BA),
are collinear. Their straight line will be called the chord 1J
of the conic.

(ii) In the same case, the lines connecting the poles ofA A',

BB', CC respectively with the points of intersection [BC, B'C).
{CA, C'A'), {AB, A'B') are concurrent. Their point of con-

currency will be called T.

The two theorems are polar to one another with regard to

the conic. They have presented themselves as follows. The
co variant pair of lines

(x - ay) (x - ay) (x-hy)(x- h'y) {x - cy) (x - c'y)
= Q

a — a'
b — b' c — c

:i)

of the pencil x-ay = 0, x-a'y=Q, ... to the six vertices

from an origin on the conic, is a pair of the involution

determined by the two pairs

, . „ (x — by)(x-b'i/) (x — cy) [x — c ' y)
(x - ay) (x -ay) = 0, ^ ^^—SI + ^ ^ = 0,

of which lhe former pair run to A and A'. The latter pair

is a pair of the involution determined by the two pairs

{x - by) [x - b'y) = 0, (.c - cy) {x - c'y) = 0.

VOL. LI. M
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It is also a pair of the involution determined by the two pairs

(x - by) (x - c'y) = 0, (x - cy) (x - b'y) = 0.

For its equation may be written

M_i L_ + _J L.Lo,
y \x — by x — b'y x — cy x — c'y)

and so, pairing differently, is the same as

(x — by) (x — c'y) (x — cy) (x - b'y) _
b — c c — b'

Thus the two points 7, J on the conic to which the lines (l)

run belong to an involution on the conic of which A, A' are

one pair and another pair consists of the points in which the

conic is cut by the line joining the point of intersection {BB',

CC) to the point of intersection (BC', CB'). Accordingly

the lino IJ passes through the intersection of AA' and the

connector of (BB', CC) and [BC, CB).
_We have here separated the three pairs oa , bb', cc into

two pairs and a single pair in one of three possible and

precisely similar ways. The other two separations give us,

just as above, that IJ also passes through the intersection of

BB' with the connector of (CC, AA'), (CA', AC), and

through the intersection of CC with the connector of (AA'
}

BB'), {AB', BA').

Having thus proved (i), we immediately deduce (ii), with

T the pole of IJ, by remarking that (BC, B' C) is the pole

of the connector of (BB', CC), (BC, CB'), and similarly for

the other points named. (The figure will be found to be

compact when AABB'CC is the order round the conic.)

2. To the two theorems a third may be added, if we
remember that two triangles inscribed in one conic are

circumscribed to another. For this reason the correlative

of theorem (i) gives us a theorem as to our present figure

of two inscribed triangles, of which the following is a state-

ment :

—

(hi) If L
t
, M

t

, N
t

ore the respective intersections of BC,
CA, AB with B'C\ CA', AB', L

2 , M, Nt
the respective

intersections of CA, AB, BC toith AB\ B'C, CA, and
L

3
, M3 , iV

3
those of CA', A'B', B'C ivith AB, BC, CA,

the lines from L,, 71/,, N respectively to the points of intersection

(M^, /,,£,), (iV.L,, mjQ, (Zvl/,, AyV3 ) are concurrent.
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3. Let us next take two complete inscribed quadrangles

ABCD, A'B'C'D', definitely choosing A and A', B and B\
C and C, D and D' as corresponding vertices. Consider the

pair ot'lines, from an origin on the circumscribing conic,

[x — ay) {x — ay) (x — by) (x — b'y)

a —

a

b — b'

(x-cy) (x-c'y) {x-dy) Ix-d'y) _
Q

c — c d—d' " '"* ''

By //, K mean the points on the conic to which the lines

(2) run, and by & mean the pole of HFC.
H, K are a pair of the involution on the conic which is

determined by the two pairs of points in which the conic

is cut by

[x — ay) (x — ay) [x — by) (x — b'y)

/ ~~i 77 == "»
a — a o — o

a ,,d by
(x-w)<*-c'y)

+
(x-dy)(x-d'y) = ^

c — c d— d'

Of these two pairs we have seen that the former consists of

the points on the conic which lie on the connector of inter-

sections (AA', BB'), (AB', A'B), i.e. on the polar of the

intersection (AB, A'B'), while the latter consists of the points

on the conic which lie on the connector of (CC, DD), {CD',

CD), i.e. on the polar of [CD, CD'). Accordingly HK
passes through the intersection of the two connectors which
have been specified, and the pole S of HK lies on the con-

nector of the points of intersection (AB, A'B'), {CD, CD'),
which are the poles of those connectors.

Now there are two other ways of separating the sum of

four terms on the left in (2) into two sums of two terms, and
there is absolute similarity in all three separations. We have

then three intersections of two connectors which lie on HK,
and three connectors of two intersections which pass through

the pole S, and so have arrived at the following two theorems,

of which only the former has to be somewhat cuinbrously

expressed :

—

(iv) If ABCD, A'B'C'D' are two quadrangles inscribed in

a conic, and if the respective intersections (BB', CC), {CC,
AA), (AA', BB) are called a,, 8

t
, 7,, the respective inter-

sections (BC, B'C), {CA', C'A), (AB', A'B) cull,-J Kf, £„ 7
the respective intersections (AA , DD'), (BB', DD),

(
CC, DD)

called a
s , /3

3 , 7,, and the respective intersections (AD', A'D),
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{BD\ B'D), {CD', CD) called a
4 , /?

4 , 7,, then the three inter-

sections (a,a
2
, a,a

4), (/3,/3
2 , /3,34 ), (7,7,. 7a74 ) are collinear. The

collinearity is on the line HK.

(v) In the same case, if BC B'C meet in L, CA, C'A' in

M, AB, A'B' in N, AD, AD' in P, BD, B'D' in Q, CD,

CD' in R, then LP, MQ, and NR meet in a point S.

The figure in (v) will be found to be compact when

AA'BCB'DCD' is the order round the conic.

4. Four other points on the line HK determined by (2),

and four other lines through the corresponding S, can be

specified in the complete figure. Instead of separating the

left of (2) in either of three possible ways into two sums of

two terms, separate it, in one of four possible and precisely

similar ways, into a single term and a sum of three. The
lines OH, OK are a pair of the involution, of which two

pairs are given by the separate equations

(x - ay) (x - ay) (x - by)
{
x - b'lj) (x - cy) {x - c

'y) _
7 r 1 T< I '

—
'a—

a

b—b c—c

(x - dy) {x - d'y) = 0,

and are also a pair of each one of three other involutions,

determined by pairs specified in the same way upon dis-

sociating, instead of (d, d'), from the rest of the letters, first

(a, a'), then (b, b'), and then (c, c).

The equations of three terms have been interpreted in § 1.

The one written down represents the lines from to the

points I, J on the conic which have been associated with the

triangles ABC, A'B'C in theorem (i)—let us say the points

J
4 , Jt

. The pair of lines OH, OK belongs then to the in-

volution determined by the pairs 0/
4

, OJ
K
and OD, OD', so

that HK passes through the intersection of I
4
J

i
and DD'.

The other separations tell us in like manner that it also

passes through the intersections (/,«/,, AA '),
(I.,J

%
, BB'), {I

3
J^

CC), where /,</,, I
2
J

S
, J

3
J

3
are the // lines of collinearity of

theorem (i) in its application to the pairs of triangles (BCD,
B'CD'), (CDA, CD'A), (DAB, D'AB'), respectively.

Consequently :

—

(vi) The line HK for two inscribed quadrangles ABCD,
AB'CD', on ivhich lie the three points specified by linear

construction in theorem (iv), also contains four other points

which can be linearly constructed, namely, the points in ivhich

the connectors of corresponding vertices AA'
}
BB\ CC\ DD'
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respectively meet the lines Z,«7j, I
a
J

a, I
3
J

3 , I
t
J

t of the collinearities

of theorem (i) in its applications to the 2Jairs of inscribed tri-

angles lohose vertices remain when we remove in turn A and
A',B and B', and C , D and D'from ABCB, A'B'G'D'.

The companion theorem, polar to this one for the conic,
may be expressed:—

(vii) The point S, at which, according to theorem (v), the

lines LP, MQ, NR are concurrent, is also a common point of
the connectors of the poles P„ Pv P3 , P

t of AA'', BB ', CO',
DD' respectively with the points T

x
, 2\, T

3 , T
t of the con-

currency of theorem (ii) applied to the pairs of inscribed
triangles specified at the end of (vi).

5. Now consider two complete n-gomA
i

Ar ..A
n
,B

l

B
2
...B

n
inscribed in the same conic. All the £n (n - 1) connectors of
two vertices are regarded as belonging to the figure of a com-
plete w-gon. No definite ordering of passage from a first vertex
along a definite side to a definite second vertex, and so on round
a circuit, is contemplated. But in the two »-gons to which
we

_
are attending every vertex A

r
is regarded as having a

definite correspondent B
r

.

For convenience a notation differing from that used in the
preceding particular examples is adopted.

Let

{x-a
l

y)(x-b
l
y) = }

{x -a
t y) {x-\y) = 0, ...,

{x-a
n
y){x-b

ny)=0
be the pairs of lines from an origin on the conic to corre-
sponding vertices.

The lines

(x-a
l

y)(x-b,y) (x-a,y)(x-b
9y)

_.

t
.
(g-g.yH*-Ay) _ f3

*

a
n
— bn

' '"
^ '

are the parallels through to lines on any one of which the
n pairs intercept segments P,^,, &c, such that

Call the connector of the points where they cut the conic
the («, n) line, and its pole the (n, n) point, for A A ...AB

x

B
t
...B

n
.

v
' *

M2
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We have established certain facts of collinearity on {n, n)

lines, and concurrency at (w, n) points, for the cases n = 3, 4.

The method which has been adopted, that of utilizing the

fact that the left-hand side of (3) may in various ways be

looked upon as the sum of the left-hand sides of equations

of the same type for smaller values of n, leads at once to

general conclusions which may be stated as follows:

—

(viii) Taking any r <n, separate any r of the n suffixes

1, 2, ..., n from the complementary n — r, thus getting a set of

r A's and r corresponding B's, and a complementary set of
n — r A's and n — r corresponding B's. The (r, r) line of the

former set meets the (n — r, n — r) line of the latter set in a

point on the (re, n) line of A
x

A
t
...A

n , B
l

B
i
...B

n ] and the line

joining the (r, r) point of the former set to the {n — r, n — r)

2)oint of the latter set passes through the (re, n) point of A
x
Ar ..

4, B
t

B
t
...Bu .

The (1, 1) line of .4,, 7?, is their connector, and their (1, 1)

point is its pole with regard to the conic.

The (2, 2) line of A
y

A^ B
{

B
2

is EF the connector of the

intersections (.4,/i,, A
2
B

2),
{A

f

B
3
, AB

X
), and their (2, 2) point

is D the intersection [A^A
ti BJiJ (see § l).

The (3, 3) line for the inscribed triangles A^A^A^, B
X

B
%
B

Z,

and their (3, 3) point, are the line of collinearity, and the

point of concurrency, specified in theorems (i) and (ii), when

we change the notation.

The (4, 4) line for the inscribed quadrangles A
x

A.
J
A

i
A

i,

B
X

B
3
B

3
B

4
, and the (4, 4) point for the same, have been ex-

hibited in theorems (iv), (vi) and (v), (vii) respectively, as

a line of collinearity of seven points given by linear con-

structions, and a point of concurrency of seven lines.

The (5, 5) line for A
x

A
2
A^A

A
A

b , B
l
B,

i
B

3
B

A
B

b
on a conic

is a line on which lie five intersections of complementary

(4, 4) and (1, 1) lines and ten of complementary (3, 3) and

(2, 2) lines. Total 15. At the (5, 5) point there are fifteen

concurrencies of lines.

The (6, 6) line for A
x

Ar ..A
t

, B
t

B.
2
...B

6
is a line on which

lie six intersections of (5, 5) and (1, 1) lines, fifteen of (4, 4)

and (2, 2) lines, and ten of two (3, 3) lines. Total 31. At

the (6, 6) point there are 31 concurrencies.

And generally the (re, n) line of two sets of n points on

a conic, numbered as corresponding one to one, is specified as

one on which lie 2
n_1 — 1 intersections of (r, r) and (n - r,

n - r) lines, obtained from two corresponding selections of

r and the two complementary selections of n — r of the two
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sets of n points. These various (r, r) lines, for values of r

less tlian w, having been previously specified by linear con-

structions, the geometrical specification is extended to (», v).

Similarly an (n, n) point is specified as one through which
pass 2"

~
l — 1 lines which have been provided by earlier speci-

fications.

G. A few miscellaneous remarks follow.

(a) For the actual construction of an (», n) line we need

only two of the 2"_1— 1 intersections of (r, r) and (n - r, n— r)

lines which lie on it. The following appears to be the most

expeditious succession of linear constructions, \n{n — 1) in

number, by which the (h, n) line of A
t

A
3
...An, B

l

B
i
...B

n
can

be arrived at. We have in the figure at the outset a number
n of (1, 1) lines A

t

B
t
, A

t
B

t
, ..., A n

B
H

. Construct the (2, 2)

lines for (A^,, B
X

B
2),

{A
t
Av B

f
B

3),
..., (A

t

A
n , B

t
BJ from

pairs of (1, 1) lines, as sides of harmonic triangles of quad-

rangles. These are n — \ in number. Then construct, as

connectors of intersections, a number n — 2 of (3, 3) lines for

{A^A
2
AV B,B

t
B

t),
[A

X

A
%
A^ B,B,B

t), ..., (A^A^ B^BJ
from the first and second ot the constructed (2, 2) lines with

their respectively complementary (1, 1) lines A
3
B

3
, A

t
B

s
, the

first and third with their complementaries AJ$A
, A

t
Br and so

on. Then construct the (4, 4) lines, n — 3 in number, for the

suffixes (12 3 4), (12 3 5), ..., (12 3 n) from the first and
second of the (3, 3) lines with their complementaries AJi^
A

3
B

3 , the first and third with their complementaries A
s
B

i ,

A
3
BV and so on. Continue in this way, till at last there only

remains the construction of the one (n, n) line for (A
l
A

s
...A

ui

B
x

B.
t
...B) from the (n — 1, w-1) lines for (A^^.A _',',

B
x

B
2
...B

n_) and {A
t
A

a
...A

n _t
An, #,#„...#M_35) with their

respective complementaries A
H
B
u

and AH_l
B

u_l
. Total

in — 1) +(n — 2) '+...+ 2 + 1 = hi (n — l) constructions. Each
construction is only a taking and joining of two intersections.

(b) If two inscribed »-gons are given us without any
assignment of one to one correspondence among vertices, the

number of (», n) lines, and that of (n, n) points, provided by
the complete figure is n ! The covariant of the two >/-ies

(x - a,y) {x - a,y) . . . {x - aij), [x - b,y) {x - by) . . . [x - b
uy)

which, when equated to zero, represents all the lines from

to points where (n, n) lines cut the conic is of order 2.n !, being

the product of n\ quadratic factors like the left of (3), made
integral in a,, bv etc., by factors.
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(c) The theorem (iii) Is isolated, and not one of a suc-

cession.

(d) The («, n) lines for (A
t
A

t
.»A

m%
B

t

B
a
...B

n)
and

(A
l

A
i
...A

r
Br+r ..Bn , B

l
Br ..BrAr+1

...A
u),

"i.e. the connectors

of the points on the conic which are run to from by one
and the other of the pairs of lines

(x-a
x

y){x-a
iy) {x - ay) (x - b

ry)

a, — a
9

a
r
— b

r

are harmonic conjugates with regard to the (r, r) and
[n - r, n - r) lines through whose intersection both pass.

Correspondingly as to (??,»?) points. In particular:

(ix) The seven harmonic conjugates of the (4, 4) point Sfor
the two inscribed quadrangles (ABCD, A' B'CD') with regard

to the named points on the seven lines LP, MQ, NR, 1\PV T3
P

3 ,

T
3
PV 2\P

4
which pass through it, according to (v) and (vii),

are themselves common intersections of sets of seven lines in the

extended figure, being the (4, 4) pointsfor

{BCD'A', B'C'DA), {CAB'B', CA'DB), [ABD'C, A'B'DC),

[BCDA', BCD'A), (CDAB', C'D'A'B),

{DABC, D'A'B'C), {ABCD', A'BCD)
respectively

.

(e) If from (1), made integral by the factor

{a -a) [b-b'){c-c),

we subtract the result of replacing in it d , b', c by b', c', a',

we get a covariant quadratic

{ad + bb' + cc —a'c — b'a - c'b) &•*+...= 0,

which is recognised (cf. Mess, of Math., vol. xlix., p. 179) as

denoting the lines from to the intersections of the conic

with a Pascal line, and thus draw the conclusion: —
(x) The (3, 3) line for {ABC, A'B'C) cuts the (3, 3) line

for {ABC,B C'A') on the Pascal line of the hexagonAABBC C.

It also cuts the (3, 3) line for {ABC, CAB') on the Pascal
line of AA'BB'CC.

7. The method of proof which has been adopted is in-

applicable when the conic on which the points A and B lie
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consists of two straight lines, and the theorems as to (h, n)

points are migatory in sncli a case. But the theorems (i),

(iv), (vi), (viii) still hold with statement unaltered, provided

the points A lie on one and the point B on the other of the

two lines. Jf S is the intersection of the two lines, the (w, n)

line is now the polar line of S with regard to the n lines

A
}
B

t
, A^B.,, ..., A n

B
n , as is readily seen by taking the two

lines as axes of reference. We have then linear constructions,

most likely not novel, for obtaining polar lines with regard

to curves of any degree; for the polar line of a point with

regard to A
t

Br A^, ..., A n
B

n
is also its polar line with

regard to any n-\c through the '2n points A and B.

NOTE ON THE INTEGER SOLUTIONS OF THE
EQUATION Eif = Ax3 + Bx' + Ox + D.

By L. J. Mordell, Manchester College of Technology.

In a short note* published recently, I pointed out that no

equation of the form
y'= x3 + k (1),

where A^O is given, has more than a finite number of integer

solutions. The same result! also holds for the more general

equation

Ey^Ax' + Bx'+Cx + D (2),

where E, A, B, C, D are given integers, provided the right-

hand side has no squared factor in x. The proof of these

statements depends upon a theorem by Thuef that an equation

of the form

/ {x, y) = ax* + 4bx
3

y + QcxY + idxy
3 + ey* = l... (3)

has at most a finite number of integer solutions if the left-

hand side is not a perfect square in x and y, and also upon

some results in the arithmetic theory of the binary quartic.

As these results (l) and (2) seem so unexpected, and as the

other proof§ of (l) recently noted by Landau and Ostrowski

depends upon the theory of ideals, it may be of interest to

give a proof of (2) reduced to its simplest form.

* J'roc. Lund. Math. Soc, ser. 2, vol. xviii. (1919), p. v. Records of proceed-

ings, etc.

f As noted on page 3 of my booklet Three Lectures on Format's Last Theorem,

printed by the Cambridge University Press.

% Creltes Journal, vol. exxxv. (1909), p. 303 (a. b, c, d, e need not be integers).

§ Proc. Land. Math. Hoc, ser. 2, vol. xix., p. 276.
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Multiplying equation (2) by 81 E, putting 9% = y,, 3%= X
l

it takes the form

Vx Apf + SBtf+Cfr + Df

Putting now
-4,y, = 17/2, A

l
x

l
+B

l
= ^

it is sufficient to prove that the equation

rf= i?-g£-& M,

where q.t
and </

3
are integers, has at most a finite number

of integer solutions when its right-hand side has no squared

factor in £.

Corresponding to every solution of equation (4), we have

a binary quartic

(l,0
f -fci.a][X, X? (5),

where
and with invariants

g, = e + s?, g,=

1 , 0, -J

, - fc *7

-£ »7 s
e

re - ^ +

r

3

,

as is clear by noting the value of rf in equation (4).

All* these quarries with given invariants gr g%
can he

divided into a finite number of classes; that is to say, all the

quarries (5), of which there would be an infinite number, if

equation (4) had an infinite number of integer solutions, can

be derived from a finite number of quarries f(x, y) in (3)

with a,b,c, ... integers by means of the linear unit substitution

x =pX + r F, y = qX + s Y.

This gives on equating terms in X* and X s Y on both sides,

/= ap* + ibp*q+...e<i*= l (6),

dp dq

also p8-qr=l,

giving r and s uniquely

This is a particular case of a general theorem by Ilermite, Oeic T. 1,
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Hence an equation (6) would have an infinite number of

integer solutions in p and q, and none of the equations (6) have
a squared factor since the cubic (4) has none. By Time's
theorem this is impossible, proving the assertion for equation

(2). Equation (1) is of course only a particular case of

equation (2).

It seems very likely that the same result holds for equations

of the form

E?/ = Ajcn + Bx"- 1

+...

if the right-hand side is not the product of a perfect square in

x by a quadratic in x, but I cannot prove it.

Note.—Another proof has since been communicated to the

Lond. Math. Soc.

EVERY POSITIVE RATIONAL NUMBER IS A
SUM OF CUBES OF THREE SUCH NUMBERS.

By H. W. Richmond.

1. Waring's famous statement, "That every positive

integer can be expressed as the sum of not more than four

squares, or nine cubes, or nineteen fourth powers ... of other

positive integers", inevitably suggests similar results for

positive rational numbers. Thus some such numbers can, and
others cannot, be expressed by the sum of tioo squares; all

can be expressed, in an infinite number of ways, as a sum of

squares of three rational numbers. Sir T. L. Heath* makes
it clear that the essential criteria for distinguishing the two
classes date from Format. As regards cubes, L. E. Dicksonf
shews that certain numbers cannot be expressed as the sum
of two cubes; further knowledge concerning these is much to

be desired. Later (pp. 726-728) is quoted a theorem, due to

S. Ryley, that, every number is a sum of cubes of three rational

numbers of doubtful sign; also two proofs (by G. Libri and
V. A. Lebesgre) that every positive rational number is the

sum of cubes offour positive rational numbers. The object

of the present paper is to shew how Ryley's solution can be

* Diophantus (supplement), Cambridge (1910), pp. 2G7-273.

t History of the Theory of Numbers, pp. 072-673.
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used to reduce the minimum number of positive cubes from

four to three. Dickson refers also to two independent dis-

coveries of Ryley's theorem by T. Strong and others; I have
consulted the original versions of all these papers, except that

of Lebesgue, which I cannot discover. In §3 [ have explained
the reference in Dickson to the Leeds Correspondent.

2. All the solutions named above contain a single arbitrary

parameter, which (if for the moment we overlook distinctions

of sign) may receive any rational value. Ryley's solution is

therefore infinitely more general than Libri's or Lebesgue's.

A decomposition of a number into four cubes by Kyley's
method would contain two arbitrary parameters: one of the

cubes could in fact be chosen at random and might be regarded
as the second parameter. In the formulas of Libri and
Lebesgue all the cubes are positive if the parameter receives

any rational value within a certain range, and the same will

be proved true in Kyley's formula.

3. Historical Note. Eyley's theorem appeared in the

Ladies' Diary, 1825, p. 35, as a solution of question (No. 1420)

—

" Required a general theorem by which a natural number may
be divided any number of ways into three rational cubes"—
proposed by a gentleman who at the same time announced
that he was about to publish by subscription an extensive work
on Diophantine Analysis. Concerning Ryley's solution the

editor wrote, "This problem embraces the first improvement
in cubes since the time of Euler, and would have been a very

difficult one had the method of solution not been developed in

the solutions to the particular case in question 211 of the

Leeds Correspondent. But the following is very different, and

a more simple one than the method alluded to ". The Leeds

Correspondent was a periodical—which, 1 believe, ceased after

three numbers—very similar in scope to the Ladies' Diary.

Question 211 was a highly artificial problem attributed to

Diophantns. To find three numbers x. y, z, such that

w3 + y
3 +z\ x6+ y

3 + z
3

,
y*\z3 + x\ z

6+x3

+y3 may all be

squares. One solution came from Mr. IS. Rvley, described as

a schoolmaster of Leeds, who saw that if only x3

+y
3+z3=l/4:

,

all the four conditions must be satisfied. He resolved 1/4 into

a sum of three cubes, and in the Ladies' Diary extends his

method to any number. He also comments briefly upon the

problem of finding positive cubes.



is a sum of cubes of three such numbers. 173

4. Ryley's resolution of a number N into three cubes.

tf= xi + y
z + z* (1).

Suppose x=p-q, z=p + q, y = m — 2p,

so that

x+y+z=m (2).

N= (m - 2p)
3 + 2p* + Qpq' = m 3 + 6pq* - Gp {m -p)\

3QpY= S6p'(m-i>y—kpm3 + GpN. (3).

Let Qpq = Qp{m-p)-e (4).

To obtain a simple special solution, suppose further, after

substituting in (3;, that

e
2 = QpN, 1 2ep (m -p) = &pm\

Tlien 2e(m — p) = m*
1

and, eliminating p,
6emN=3Nm 5 + e

i

(5).

The unknown quantities m and e in equation (5) can both

be expressed as rational functions of a parameter in such a

way that m, e, p, x, y, z will have rational values when the

parameter is rational. Ryley wrote Nv in place of e, and

obtained a solution in terms of a parameter d = m/v: it is

unfortunate that he thought it necessary to solve out the values

of x, y, and z explicitly, for they are unwieldy, while x + y,

x + z, x + y + z are simple.

5. Formulas used in this paper. If we write e = mt in (5),

we are led to formulae which are more convenient to handle

;

compare those given by Strong [Dickson, p. 726). Let

e = mt, s = 3Nlt
3

(A).

By (5)

6Nt 2s . „.
X +^ Z = m =7^TN= tX

iTi
{B) '

By (4)

2s
3 [x + y) (oj + z) = e = mt= t' x -— (0),

s + 1

Hence
e s + 1 . -,-,,

x+tJ=zWT7r tx
-ir ^-
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Finally, the effect of the restriction imposed upon x, y, z

by the assumption becomes clear; for, by (D) and (E),

3 (x + yf {x + z) = \st = N.
Thus

N=x3 + i/+ z
3 = 3(x + yY(x + z) (F),

or (* + y+ *)
3 =3 {x + y)(x + z) (x + 2y + z).

The values of x, y, z are here presented in terms of a

parameter t and a subsidiary parameter s = 3 ZS/"/

^

3
. They are

rational if t is rational, and not otherwise; for

t = elm = 3(x + y(x + z)l(x + y + z) (£).

It is now possible to consider under what conditions x and y
and z are positive.

6. Limits of s and t when N, x, ?/, z are positive,

N, x, y, and z being positive, equations (G) and (A) prove

that t and s are positive
;
y is positive when x+y-\-z>x + z, i.e.

y>0 if s> 1 (6).

Next, z is positive if %.+ y + z> x +^, or 12s>(s + l)*;

z>0 if 5+V(24)>«>5-V(24) (7),

?.e. both 2/ and « are positive if s lie between 1 and 5 + V(24).

Lastly, # is positive it

{x + y) + (x + z)> x + y + z

or s'-9s? + 15s -M> 0.

The left-hand member vanishes for three real values of s, viz;

s = 3+ 4 cos 20°, s = 3 + 4cosl40°, s = 3 + 4 cos2G0°,

and is positive if

s> 3 + 4 cos 20°,

or if 3 + 4cos260°>s> 3 + 4cosl40°.

Thus x and y and z are all positive (i) if s lie between 1 and

3 — 4sinl0°, or roughly 1 and 2.30G
;

(ii) it's lie hetween

3 + 4 cos 20° and 5 + V(24), or roughly G.759 and 9.899. For

example, if JV=4, t = 2, .9 = 3/2, we find

4 = (53/150)
8 + (12/25)

3 + (47/30)
s

.
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The positive values of x, y, and z given by these formulas

are not simple numbers; one of them must be considerably

larger than the sum of the other two, and if s has a value near

one of its limits, another of the three numbers x, y, z is small

in comparison with the others. But the theorem is estab-

lished that

:

In the problem of expressing any rational number as a sum

ofcubes of rational numbers (both ivhen the numbers are restricted

to positive values and when they are not so restricted), two cubes

may be insufficient, but three cubes always provide an infinity

of solutions.

NOTE ON THE BINOMIAL THEOREM.

By Prof. E. J. Natiso?i.

Let n
r
= n (n - l)...(n —r+l)lr\

S
r
==l + n

l
X+...f n

r
xr

,

then by differentiation

5k& a + »ni =-(»- r) ry* (i + *r
n-\

and hence by integration

8
r (1 + x)'

n - 1 = - (n - r) n
r

f xr
(1 + x)~

n ~
l

dx,

and therefore

(1 + x)
n - S

r
= {n - r) n

r (1 + x)
n

[
xr

(1 + a;)"""
1

dx.

Now if x is positive so is xr (l+x)~n '
1

dx, and therefore

(1 + x)
n — S

r
has the sign of n (n- l)...(n — r). Thus, x being

any positive number, if r <n, we have

(i +x) n- 8r < (n - r) n
r
(l+ x)

n

[ xrdx < »,. +1
£r+1

(I + x)
n

,

J o

whilst if r~n we get

(l+a>)-=#„,

and if r> n then (1 + x)
u

lies between S
r_^ S

r
.

Thus, x being any positive number, it S
r

is taken as an

approximation to (l+x)", the error does not numerically
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exceed rt
r+,of

+1 when r>n, and when r < n it does not exceed

M
rtI

a?
r+1

(l + #)".

The truth of the binomial theorem for any exponent im-

mediately follows for the case <x < 1 and also for the ease

x = 1, provided Lt »
r
= 0, and this is so if n + 1 is positive.

r-»oo

Next let — 1 <x <0 and first suppose n + 1 to be positive.

Then obviously

[ f
x

I I C* I

af (1 + a;)"""
1

<ta < (1 + a-)"""
1 xr dx

I

J
I
^

<(l+.T)- 1

|a;-
1 /(r+l)|,

and hence
| (1 -f x)

n-S
r \
<{1 +x)~ 1 \n^

l
xrU

\

for any value of r.

The truth of this inequality, when r is so large that S
r+l

includes the numerically greatest term in the expansion of

(1 +x) n
, has long been known.

JSIext suppose n + 1 to be negative. Then obviously

xr
{l Jrx)

nl dx < xr dx <K+1 /(r+ 1)|,

and hence
| (1 + x)

n - S
r \

< (1 + x)
n

\
nrUx

rH
\.

Thus when — 1 <x <0 the error in taking S
r
as an approxi-

mation to (l + x)
n
does not numerically exceed the product of

the next term, viz. »rMaf
rl

, and (1 + X)'
1

or (1 +X) n according

asn + 1 is positive or negative.

The truth of the binomial theorem for any exponent im-

mediately follows for the case — 1 <#<0, and also for the case

x = — 1 if n is positive, because (l+#)
n

xr
(1 + x)~

n
' dx is

finite if n is positive. •* •

The conclusions in regard to the remainder may be summed
up as follows, viz. we have

|(1 +£)"-£,. |

<A\n
r+l
xr

"\,

when for any positive value of x the coefficient A has the

value (1 + tc)", 0, or 1 as r< = >n, and for the case — 1<#<0
the coefficient A has the value (1 +»:) ' ol " (!+#)" {ls " + 1

is positive or negative. When n + 1 is zero the remainder is

(-ir^'ci+a)- 1

.

Melbourne,
June 20, 1921.
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AN ELEMENTARY NOTE UPON
WAKING'S PROBLEM FOR CUBES, POSITIVE

AND NEGATIVE.

By //. W. Richmond.

1. It is the custom to group together under Waring'a
name results concerning the expression of given numbers ;<s

the sum of powers of other numbers. Waring's original

assertion with regard to cubes—that every positive integer

can be represented as the sum of cubes of not more than nine

other positive integers—made in 1770, was proved in 1909 by
Wieferich ; no one should omit to read the account of the

problem given in Professor G. H. Hardy's Inaugural Lecture
before the University of Oxford (Clarendon Press, 1920).

Waring's problem may be extended in two obvious ways

—

rational numbers may be admitted as well as integers, and
negative numbers as well as positive. I believe that the

following results, quoted from vol. ii. of Prof. L. E, Dickson's

exhaustive History of the Theory of Numbers, summarise what
is known upon these subjects.

{a) Every positive rational number is the sum of four

positive rational cubes (p. 727). Every rational number is

the sum of three rational cubes, positive or negative (p. 726).

Certain numbers cannot be expressed as the sum of two
rational cubes (pp. 572—578).

(b) Zero cannot be expressed as the sum of three (finite)

rational cubes (pp. 545—550) : it can be expressed as the sum
of four or more integral cubes (pp. 550—561, 563—566).

(c) Every integer is the sum of five integral cubes, positive

oi- negative (p. 729). Dickson attributes this to 01tramare,
who proposed it as a problem. Solutions by Friocourt,

Lemoine, Teilhet, and Franel are to be found on the pages

to which Dickson gives references.

It is this result (c) that I shall first consider, as a stage of

the problem of expressing any given integer N as a sum of

cubes of (five or fewer) integers, positive or negative. In
what follows a "number" is understood to mean an integer,

positive or negative.

2. Every number N which is a multiple of 6 (iV= Cm) is the

sum oj the cubes offour numbers whose sum is zero. Further,

N can be, expressed as the sum of Jour such cubes in just as

many ways as 2m or NjB can be resolved into three factors

(ivithuut regard to sign) ichose sum is even.

VOL. LI. N
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For if iV/3 = abc, and a +!> + c is even = 2s,

Ar /a+b+c\* /a-b-c\*
,
/-a+6-c\ 5 f-a-b+c^)

and the statements fire established without difficulty.

In particular, since N/3 = 2m = 2m x 1 X 1 (three factors,

whose sum is even),

N= 6m = (m + 1)
3+ {m - l)

3+ (- mf+ (- m)\...(2),

as is algebraically obvious.

3. Every number N is the sum of cubes of 5 integers.

Take any number ^ such that £> = -/V (mod 6). Since

p*—p or (p — 1) {p) (jo + 1) is the product of three consecutive

numbers, it is divisible by 6, i.e. p=p* (mod 6). Thus

N-p3= (mod 6),

and, by §2, J\T^«+ /»+/+*•+ /,M
(g)

where /+gr + A + A = )

Here ;? can be taken at random from the numbers N± 6?

[I being an integer); and, when p has been chosen, a finite

number of sets of values of /, g, h, k having zero sum can be

found. In the solutions of Oltramare's problem, quoted by

Dickson, a value (usually small) is given to p, and the special

form (2) is used for/, g, h, k.

4. A special solution for any even value of N.

An interesting set of solutions is obtained by giving^? the

value N, so that we have for iVan expression

JNT=JV»+/3+/+A8+A8

| (4)<

where /+ g + h + h = j

In order to find/, g, h, k, we have to resolve I (lV
3 - N) into

three factors whose sum is even. If N is an even number,

N+ 1 and N— 1 are odd, and dividing one of the numbers

by 3 we have three factors, one even and two odd; their sum

is therefore even.

Since every even number is of one of the forms 6m or

6m ±2, we may write

N= 6m, I {N
l- N) = (Gm + 1) (2m) (6m - l),

or

N= Cm + 2, 1 (N 3-N) = (2m { l) (6m + 2) {6m + 1), etc.,
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and derive the explicit formulae

N= 6m = (6m)
3 + (5m)

3 + [m + 1)*+ (m - 1)
:1- (7m)

3

j

JV=(6w±2)= (6»i±2)a+(5w±l)3 + (w±l)*+(w) a-(7i?i±2
3

i

(5).

5. Two special solutions of type (4) for any odd value„of N.

N being odd, the numbers N+ 1 and N— 1 are even ; one

is divisible by four, and the other by two, not by tour. Thus
^(N 3—N) has factors a, 2b, 4c, where a and b are odd. The
sum of these is odd; but we derive factors with an even sum
by writing either

I
{N3-N) = 2ax2bx 2c,

or = a x b x 8c.

Every odd number is one of the forms 12m ±1, 12m ±3,
12m ±5, and we are led in each case to two formulae similar

to (5), one of which is now quoted:

JV=12m±3 = (l2wi±3)s
+( 7m + l)

a

+( 5m±l) s
+( m±l)*-(13m±3) 3

\

xV=12m±l = (l2m±l) 3

4( 7mj 3
+( 5Ai±l)

8
+( m )

3-(13m±l) 3
L

lY=12m±5 = (l2m±5)
3+(13m±5) 3+(llm±5j 3-(7m+3/-(l7m±7) s

J

(6).

6. Limits to the number of cubes required.

It has now been shown by (3) that every number N can

be expressed, in an infinite number of ways, as the sum of

five cubes of a special kind, and the question arises whether
this number five cannot be reduced, possibly for all values of

N, possibly for certain forms of N. [We have indeed already

seen in (1) that, when N is of the form 6m, only four cubes

are necessary]. Now all numbers are of one of the forms 3/,

or 3/±l, and all cubes are therefore of one of the forms 9/,

or 9/±l. It follows that a number N of the. form 9^ + 4

cannot possibly be the sum of cubes of fewer than four numbers,

all four numbers being of the form 3^-f 1. A similar result

holds if JV=9?i — 4. Alt numbers can be expressed by five

cubes; some numbers cannot be expressed by fewer than four.

If we seek a rule true universally for all numbers, the problem
is clearly defined: "Can all numbers be expressed as the sum
of four cubes, positive or negative"? But other less general
results may also be worth studying.

7. Expressions similar to (5) and (6) for Pm + Q as a sum
offour cubes.

A possible elementary method of investigation is suggested
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by equations (5) and (6). In each result the sura of the cubes

of five linear functions of a variable in reduces to a linear

function of m; cannot a similar result hold good for four (or

even three) linear functions? Cannot

N=(a + mAy+(b + mB) 3
+(c+mC) 3+{d+mD) 3= P»i + Q..{l)

for all values of m ? If integer values are found for a, b, c,

d, A, B, C, D, all the terms of an arithmetical progression

will have been expressed as the sum of four cubes, It is

undeniable that some numbers, expressible as the sum of four

cubes, may not belong to any such arithmetical progression,

and will be overlooked by this method. Nevertheless, the

method proves simply and in a convincing manner that the

majority of numbers (almost exactly 75 per cent.) can be

expressed as the sum of four cubes; for it actually supplies the

expressions.

8. Consideration of equation (7).

It will be supposed that a, 6, c, d, A, B, C, D are integers,

so that every integer value of m gives an expression for some

number as a sum of four cubes. Further, if any factor r were

coininon to A, B, C, B, it could with advantage be absorbed

into the variable in by use of a new variable in —rm, inasmuch

as all integer values of in would lead to integer values of N:
A, B, C, D will be assumed to have no factor common to all

of them.

By writing — m in place of ?n, and changing the sign ot

the whole equation, we see that equation (7) also expresses all

numbers Pin — Q as the sum of four cubes

N'={-a + mA) 3 +{-b + inB)
3 +...=P,n-Q....{8),

and thus proves that every number = ± Q (mod P) is a sura

of four cubes.

Equation (7) implies that

A 3+B3 + C 3 +D3 =0

aA, + bB' + cC*+ dD' =
,

V (9).

3 {a*A + b
lB +cJC+ d'D) = P

a' + b
3 +o3 +d 3

=<),

The first of these readily shews that it is useless to attempt

to apply this method to a smaller number of cubes than four.

The third shews that P is a multiple of 6. For aA 1 and Ad"

are both even or both odd ; hence the fact that the sum of
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the four quantities on the left of the second equation vanishes

ensures that the four quantities within the bracket of the

third have an even sum. [It may be mentioned, although

it is not directly helpful to us, iliat it is possible for P to

vanish: it can only do this for rational values of A, B, G, D,
a, b, c, d, when the product ABCD is the square of a rational

number.]
The values of N, for which (7) can be satisfied, are subject

to a serious limitation, viz. that N cannot be of the form
9>?±4. This will be demonstrated in §9; after which ex-

plicit results as to the representation of other numbers as the

sum of four cubes will be obtained.

9. No number N of the form 9» + 4 is given by equation (7).

If a number N corresponds to a value ?n
a
of the variable

m, m—m may be taken as a new variable; then the number
N corresponds to the value zero of the new variable. 1 sup-

pose that this has been done, and that in equation (7) a

number N of the form 9« + 4 corresponds to the value of mi;

thus

N=9n + 4 = a
3 + b

3 + c
3 + d 3

.

As pointed out in § 6, each of the numbers a, b, c, d must be

of the form 3l+ 1, and therefore by the second of equations (9)

i'+F+6" + i)
a = (mod 3).

This implies (since all squares =0 or +1 to mod 3) either

that A, B, C, D are all = (mod 3), or that one of them =
and the other three all =±1 (mod 3). The former supposition

is ruled out by § 8 ; and the latter (by consideration of the

remainders to mod 9) is seen to be incompatible with

A 3 + B*+C 3 + D3 = Q.

Hence, after a similar treatment of N=9n — 4, we see that

No number N of the form 9«±4 is included among those

given by formula (7).

It is not to be inferred that a number JV= 9>i±4 cannot

be expressed as a sum of four cubes; many examples, such as

400 = 7
3 + 4'+l 3 + (-2)

3

,

prove the contrary. But, if «, b, c, d=7, 4, 1, —2, no finite

values of A, B, C\ D satisfy (7).

10. A simplified form of equations (7) and (9).

In the remaining sections of this paper it will be shown

that, of numbers N not of the form 9?i±4, all those of the

forms 9/1, 9/i±l, or 9/e±3, and a very large proportion of

N2
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those of tlie form 9n±2, can be expressed as the sum of four

cubes, and explicit formulae will be stated. This will be

done by means of a simplified special form of equations (7)

and (9) in which A + B and C + D vanish. Suppose that

A=-B = p, C=-D + r.

With these values the first of equations (9) is always satisfied,

and we have

N= (a + mpY + (b- mp)*+ (c + mr)' + {d - mrf = mP+- Q
(10),

provided

(a + b) p* + (c + d) r
s =0 v

S(d'-b i

)p + S{c'
i -d')r = P [ (11).

a*+b*+ca + d*=Q)
Ifp and r possess any common factor, a new variable may (an

in §8) be introduced in place of m ; it is therefore allowable

to assume that p and r are relatively prime. By the first of

equations (10)

a + b=fr>, c + d=-fp* (12),

where f is an integer; and, by substitution in the second

equation,

P=3fpr[(a-b)r-(c-d)p-} (13).

11. Proofs that all numbers N of the forms 9>i, 9>j ± 3,

9/j ± 1, may he expressed as the sum offour integer cubes.

(i) Suppose p=r=f= 1 ; take a= l, J = 0, c=— 1, d—0]
equations (12) are satisfied, (13) shews that P= 6 and

Q= a
3+b3+c !i +d3=0.

Thus 6m = (1 + mf+ (- m) 3
-t- (- 1 + m/+ (— m]%

as already stated in (2).

(ii) Again, suppose p=l, r = 2,/=l, then

a + b = i, c + d = -l.

Taking « = 2, b = 2, c= - 1, d = 0, we find that P=6, # = 15,

6m + 15= (2+m)"+'(2-w)*+(-H 2)>i)
3 + (- 2m) 3

.. .(14).

Every number N, divisible by three, whether even or odd, can

be expressed as the sum offour cubes.

Lastly, suppose p = l,f= 1, r— successively 3 and 6.

(iii) p=\
)

,- = 3,/=l; a -\ &= 9, c + d = -\.
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Take a = 5, b = 4, c=0, J=-l, then P=18, ^=188,

(15).

Thus all numbers iVof the form 18m + 8 are expressed as the

sum of cubes of four numbers; changing signs as in (8) all

numbers of the form 18m — 8 are so expressed.

(iv) p=l, r=6,/=l; a + b = S6, c + d=-l.

Take « = &= 18, c = -l, d= 0; then P=18, (? = 2x 18
8-

1,

(18 + m)*+ (18 - mf 4- (- 1 + 6m)'+ (- 6/»)
3

= 18m + 2 = 18
3- 1 = 18 [m + 648) - l...(16).

Thus all numbers of the forms 18m— 1 and 18m + l are

expressed as the sum of four cubes.

The cases now established are JV=6»i, 6m ±3, 18m ±1,
18m ±8, i.e.

All numbers of the form 9 n, 9;j±l, 9/i±3, are expressible

as the sunt offour cubes.

1 2. Numbers N of the form 9/j ± 2.

It only remains to consider numbers JVof the form 9>?±2.

This involves more difficulty than has hitherto been met with,

and it will be necessary to examine equations (10)—(13) more
minutely in order to discover and analyse the various possi-

bilities.

Let us consider how a number N of the form 9?* ±2 can

occur in these formula?. We have seen that P is a multiple

of 6 ; hence, to mod 6,

N= Q= a
3 + b

3 + c
3 + dH= a 4 b + C + d=f{r7- p

2

)
.

Unless r is divisible by 3 and p not (or vice versa) N is a

multiple of 3 and cannot = 9n ±2. Hence we confine ourselves

to cases where ?- = 3s, and p and/ are not divisible by 3;

a + b = 9fs', c + d= -fp\

7>= Qfps [3 (a - b) s-(c- d) p].

But now P is divisible by 9, and also a + b\ so that

Q = C*+<? (mod 9).

It follows that c and d both = 1 (mod 3), if N=Qm + 2, and
both = — 1 (mod 3), if N= 9m — 2; and that c— d is divisible

by 3. Finally, therefore, the formula required for the case

j\
r= (Jn ±2 become
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N= {a + mpY+ [h - mp)" f (c + Bmsf+ (J-Sms)s = Pn + Q

c=3c'±l, d=Bd'±l

a.+ b = 9fs", c + d=-fp2

P= 27/ps T, where T= {a -b)s-{c- d')p

Also, p and s are relatively prime
; p and/ are divisible by 3 j

......(17).

It is now possible to tabulate completely the cases in which

Phas a prescribed value of the form 2"3 D
. P is 27/psT, and

is known when the separate values of/, p, s and T have been

assigned, but these values provide only three (linear) equations

to determine the four quantities a, b, c, d. The values of

a, b, c, d are in fact indeterminate, and involve linearly an

arbitrary parameter; but this parameter can be merged in the

variable m. One set of values of a, b, c, d is all that is wanted

when f, p, s, and Tare known.

The natural procedure is to select a maximum value for P
and discuss all cases in which Pis either this maximum or a

submultiple. The maximum I have chosen is 1296, so that

J'psTh 48 or a factor of 48, since it is clearly better to choose

a maximum unduly large rather than one too small. Values

selected for s and p form the basis of the tabulation
;
then/

is chosen, and for each value of/ it becomes plain whether the

ambiguities in (17) should be + or -, and whether Tis odd or

even; finally, all possible values of T are considered. The

results of the work, which is quite straightforward, are summed

up in the statements that

—

Any odd number N of the form 9/* ±2 can be expressed as

the sum of four cubes by formula (9), except possibly when

JV=324/n±25.
Any even number lYof the form 9n + 2 can be expressed

as the sum of four cubes by formula (9), except possibly when

J\T=108»J±38 or 432w±164.
It is thus proved that seventeen out of eighteen odd numbers

and nineteen out of twenty-four even numbers of the form

9?j ± 2 are certainly expressible as the sum of four cubes.

The remaining numbers of the form may be so expressible,

as may numbers of the form 9/<±4.

In the table now to be given repetitions are avoided; no

more than one formula is applicable to any number N.

13. Synopsis of results.

JV"= (a + mpf+ {b - mpf } (c I ?>*/•/+ [d- mrf = mP+ Q.
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Tlie values of p, r, a, J, c, d, and P are liere tabulated for

each formula. The value of Q is of little interest and is

suppressed; in its place S, the smallest value of JV given by
the formula (N<\P), is shewn, so that each formula proves

the possibility of expressing as the sum of tour cubes all

numbers N tor which
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cases still unsettled, and on the other it seems probable that

the capabilities of the method have not been fully explored,

and that it will yield these and further results.

14. General considerations.

It is the extreme simplicity of the elementary algebraical

identities of which this fairly wide sets of results have been

derived that has led to the writing of this short paper. The
expressions we have obtained for a number N as the sum of

cubes of four numbers a, b, c, d are subject to sundry restric-

tions, which can only be overlooked so long as the method is

easy and successful. One such restriction is mentioned in § 7.

Another is proved in §9, and the numbers AT=9tt±4, to

which our method cannot be applied, are unfortunately the

only numbers in which four can be definitely asserted to be

the least possible number of cubes. For other forms of N*
it is always possible that three cubes can be proved to be

sufficient. In all the four-cube representations that have been

established by means of equations (10)—(13) a restriction has

been imposed that (a + b)j(c + d) shall not only be negative,

but shall numerically be the square of a rational fraction rjp.

Under such stringent conditions it is by no means improbable

that the actual minimum number of cubes will never be

obtained; rather it is surprising that a four-cube representation

can be established for practically 75 per cent of all integers.

"With equations (7) and (9), which are less restricted, the

difficulty of obtaining prescribed values of P in any systematic

manner seems at present a fatal objection.

NOTES ON SOME POINTS IN THE INTEGRAL
CALCULUS.
By G. H. Hardy.

IN.

On the integration of Fourier series.

1. PuOF. W. II. Young, in the course of his researches

in the theory of Fourier series, has discovered a very beautiful

theorem which is of great importance for the evaluation of

definite integrals which contain a periodic factor. The theorem

may be stated as follows:

THEOREM. Suppose (i) thatf{x) is summahle and periodic,

with period '2tt
;

(ii) that g (x) is of bounded variation in the

* There is no difficulty in showing that two cubes aru often inadequate.
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interval (0, co
)

; and (in) that the integral

(1) fQ \g(x)\dx

is convergent. Then the value of the integral

(2) f f(*)9i*)d*

may be calculated by substituting for f(x) its Fourier series

\a
a
+ 2 (a

n
cosnx + bn sin m#)

a»df integrating formally term by term; so that

(
3

)

J o
/(*) </ (#) ^ =K

J
.9 (* )

^

+ 2
j
al g (x) cos ??£ dx+ b

n
\ g (x) sin nxdxi .

In -particular this is so if (iia) <7 [x) is positive and decreases

steadily as x increases, and (iiia) the integral

(4) fQ g (*) dx

is convergent.

Ifa
u
= 0, the condition (iii) or (iiia) may be replaced by the

less exacting condition that (iii/*) g (x) tends to zero when x tends

to infinity.

Although everything stated here has been proved by
Young, his various publications bearing on the matter* do
not, so far ;is 1 am aware, contain any quite definite and
explicit statement of the theorem as a whole, which is the

result of the collation of a number of different passages. And
the proof, as presented in his writings, is in any case some-
what intricate. In the first place it involves the assumption
of 'Parseval's Theorem' in a very general form. Secondly
it depends, in part at. any rale, oil a general theorem concerning

* W. H. Young: (I) 'On the integration of Fourier series', Proc London
Math. Sue, ser. -', vol. i\

, 1910, pp. 449-462 ; (2) 'On the theory of the application
of expansions to definite integrals', ibid., pp 463-486; (3) 'On integration with
respect to a function of bounded variation', ibid., vol. xiii., 1913, pp. 100—150;
(4) 'On the Fourier constants of a function', Proc. Royal Soc. (A), vol. Ixxxv

'

1911, pp 14-24.

In order to ol tain the theorem as I have stated it, it is necessary to compare
Theorem G of \i) and Theorem 2 of (1), together with the extension of this latter
theorem to an infinite range of integration [(1), pp. 154-455]. The complete
result is fundamental in (4): see in particular pp. 17-18 The simplification ill

the proof of Theorem t> of (2), due to the generalised theory of integration, is

indicated on pp. 147-148 of (3): the argument here supersedes the 'delicate and
lengthy' argument of (2), pp. 475-181.
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the integration of series, the proof of which presents con-

siderable difficulty. Of this theorem he has offered two

proofs. The first is, as he remarks himself, ' delicate and

lengthy'; while the second, which is very much simpler,

depends upon his general theory of integration with respect

to a monotonic function (or function of bounded variation).

It seems worth while, therefore, to include in these notes a

proof which is more direct and presupposes a good deal less.

2. I shall require three lemmas.

(1) If (i) sm (x) is, for every positive integral value of m, a

measurable function of x; (ii) sm (x) is bounded for a <x <b,

m = 1, 2, 3, ...
;

(iii) sm {x) tends to a limit s{x) when m -> co
,

for all, or almost all, values of x; and (iv) f{x) is summable :

then s {x)f(x) is summable and

rb rb

lim sm (x)f(x)dx=\ s\x)f{x)dx.

This is a well-known theorem due to Lebesgue and Vitali.*

I follow Young in saying that, when conditions (ii) and (iii)

are satisfied, s
n
(x) converges boundedly to six).

(2) If s(x) is of bounded variation in the interval (0, 27r),

then the sum of the first n terms of its Fourier series converges

boundedly to s(x).\

This is an immediate consequence of the ordinary theory

of Dirichlet's integral, when developed (in Jordan's manner)

by means of the (Second Theorem of the Mean. A formal

proof is given by Young.t

(3) If g (x) is summable.and of bounded variation in the

infinite interval (0, co)§, then the series

g (x) +g{x + 2tt) +g{x + 4tt) +...

is convergentfor every positive value of x, and its sum G {x) is

summable and of bounded variation in the interval (0, 2n).

rx+2[n+l)ir

Let g{x + 2mr) = u
n
{x\ g{t) dt= v

n
(x),

J z+2mr

where <x<2tt. The series Zv
n
(x) is (absolutely and uni-

formly) convergent. Also

* See de la Vallee-Poussin, Cnurs dAnalyse, vol. i. (third edition, 1914), p. 264

(Theorem II.) ; or Young's paper (2), p. 468 (Theorem 2).

+ The limit function is

b{s{x-0) + s{x + 0)},

which differs from s (x) at most at an enumerable set of points.

X I.e. (2), p. 453.

§ i.e., if the conditions (ii) and (iii) of the main theorem are satisfied.
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aH-2(n+l)

dt"»-«» = {g^ + ^ir)-g{t)}
J x+2mr

is plainly not greater in absolute value than 2irV
n , where V

n

is the total variation of g (t) in the interval

X + 2mr, x + 2(n + l)7T.

Hence '2{u
n
(x) — v

n
(x)\,

and therefore 2ujx), is (absolutely and uniformly) convergent*
Thus G(x) is defined for 0<x<2tt. Also

\G(x)\<\g(x)\ + \g(x+2n7r)\+...,

so that G{x) is suinmable and

l

2ir

\G(x)\dx<r \g(x)\dx.
Jo Jo

Finally, if x
t
and x

t
are any two points of the interval (0, 2tt),

we have

|

G {x
{
)
- G (.r

2) I

< 2 \g {x
{
+ 2nx) - g {x

t
+ 2mr)

|

.

Hence if we form one of the sums by means of which the

variation of G (x) in (0, 2tt) is defined, it is less than or equal

to a corresponding sum formed for g (x) and the infinite interval

(0, co ). Thus the variation of G (x) in (0, 2ir) does not exceed

that of g (x) in (0, co ).

3. We can now prove the main theorem. Suppose first

that the conditions (i), (ii), and (iii) are satisfied. Then

2 a 9 (
x ) dx + 2

(
a

,,\ 9 i.
x

)
cos7ixdx+ b

n
g(x) sin nxdx)

l± r y wrf«f'
" i " (w

2*Ha!-VwA
2ir Jo

JK J

Jo vn±{x-t) J w

=— fit) dt :

—t-t^-1 q (x) dx,
2tt Jo

j w
Jo sm$(x-t) ,yv

'
'

* It is plain that, by a trifling modification of this argument, we can prove the

following proposition : il g(x) is nf bounded variation in (0, oo
), then the difference

where a is a constant, tends to ajinite limit when n -> oo
; so that the series and integral

Zg(n + a)-f"'g(x)dx,

2<7 (« + «), j
g{*)dx

converge or diverge together. This is a generalisation of the classical ' Cauchy-
Maclaurin ' test for the convergence of series. If g [x) is an in f egral, its

variation is

^ \g'(x)\dx.
Jo

The theorem then reduces to one proved by Bromwich, ' The relation between the
convergence of series and that of integrals', Proc. Lond. Math. Soc, ser. 2,

vol. vi
, pp. 327-338.
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the inversion of the order of integration being plainly legiti-

mate. But

mW
2tt Jo smite-*) y v ;

SlUf (03— *)

1 C^H\n(m + ^)(x-t)

~^r Jo

is the sum of the first m + 1 terms of the Fourier series of

#(*), and so, by Lemmas 2 and 3, converges boundedly to

G [t). Hence, by Lemma 1,

J*7w <*. * -> J^/w <? (o * -
J"

/ft .9 w *

when wi-»co . This proves the first part of our theorem.*

4. We have still to consider the second part of the theorem,

in which

«o =
7r J

f(x)dx = 0,

but the integral (l) is not convergent. This case is easily

reduced to dependence on that which we have already discussed.

Suppose that the conditions (i), (ii), and (iii h) of the theorem

are satisfied, and let

7 (a?) = g(2rmr) \2mir <x <(2m + l)ir\

and g{x) = y{x)-g(x).

It is plain that 7 (se), and therefore g(x), is of bounded variation

in (0, co ). Also

\g(x)\dx=\ \g (2»itt) - g {,) \
dx < 2tt Vm ,

where Vn
has the same meaning as in the proof of Lemma 3

(§ 2). Hence the integral

I g (x)
I

dx

is convergent.

* It might be thought that it would be (simpler to begin by considering the case

in which g(x) is monotonia If so, G (x) is plainly su unliable and monotonic in

(0, 2ir) ; and the proof is materially simplified.

There is however a difficulty. If g (x) is summable and of bounded variation

in (0, 00 ), it must tend to zero ; and g {x) — h (x) — k (x), where h (x) and k (x) are

positive functions which tend steadily to zero. But the summability of g (x) does
not necessarily involve that of h(x) and k(x). The point may be illustrated by
the example of the function

£(*) = - -1777 (» <*<» + !; n-1, 2, ...).M+1
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Tims g (x) satisfies the conditions imposed upon g (x) in the

preceding analysis, and so (3) holds when ^{x)- g[x) is written

for g (x). But

f
00

oo /2(m+l)7r

/» 7 [x)dx= ^ f(x) 1 {x)dx
JO J 2»iir

= S^(2wm) r
7r

/(^)^ = °
>

o Jo
and similarly

r r
7 (a;) cosnx dx=0, y (x) s'\nnxdx = 0.

Jo Jo

Hence (3) also holds when 7(a)) is substituted for g[x), since

every integral which occurs in it vanishes. And hence, finally,

(3) holds as it stands.

5. The theorem of § 1 enables us to evaluate, in the form
of infinite series, the integrals considered in Notes IV. and
JX. If

f(x) = <p{s\n
2
x)

we have f[&) ~ i fl "t" ^ (
aim cos ~mx + ^im sm %mx)'

If ^(a;) is positive and tends steadily to zero, and the integral

^4) is convergent, then

(5) (f>
[mi

s
x) g (x) dx = \a^ g (x) dx

+ ~\a.Jm
\
g {x) cos2mxdx-\ b2m g(x) sin

2

mxdx \ .

It* (4) is divergent, then

(6)
Jo

{${*m*x)-±aig[x)dx

— s
\
a

-2m I 9 (
x) cos 2nia? dx + &fM

I

# {x) sin 2»w?rfa; ! .

One of the most interesting applications of the theorem,

which is signalised by Young, is to the case in which

g{xj-aT* (0<p<l).

In this case g (x) has an infinity at the origin, and the analysis

requires modification. We may begin by taking

y(x) = 0(0 <x<c), g{x) = x"~
i (x>c),

and applying the theorem to g (x). We thus justify term-by -

tcrm integration over the range (c, QO ). ' In order to justify



192 Prof. Hardy, On some points in the integral calculus.

integration over (0, c), we have to impose an additional

condition on f{x) in the neighbourhood of the origin. If we
suppose that f{x) is of bounded variation in (0, c), its Fourier

series converges boundedly in that interval. We may there-

fore, by Lemma 1, multiply by the sumroable function x 7
'' 1

and integrate term-by-term. Combining our results, we see

that term-by-term integration over the whole interval (0, co

)

is permissible. We thus obtain Young's formula

P) f l/M-W **-rW

i

«."»W »""*>"
:

f{x) being any periodic and suinmable function which has

bounded variation in an interval (0, c).

6. As an example of the use of theorems of this character,

I add the following very simple deduction of the functional

equation of Kiemann's Zeta-function.

Suppose that

f( \ _ v s ' n (2m + l)x

^W-f 2m + 1 '

so that

f{x) = \ir {2far<a?<(2jfe + !)«},

/(x)=-Itt {{2k + l)ir<X< 2(£+l).}.

Then (7) becomes

r
.s(- if

J fe
ar-«fe-r(P).intoWrs (aw + 1)1,

The series on the right-hand side converges to

(l-2,
**)f(l+p)

if i? (p) > 0. That on the left-hand side is

^i(-l)*{(* + l)*-F}'.

It is convergent if R{p)<l. Further, if i2(^)<0, it is

equal to

^ (
p-2"+ 3'-...)=^(i-nr(-p).

Writing 1 +p = s, we obtain

£ (1 - s) = 2 (277)"' cos IstjT («)£(*),

the functional equation.

I'
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